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MACHINERY DYNAMICS

AN INTEGRATED GEAR SYSTEM DYNAMICS ANALYSIS

OVER A BROAD FREQUENCY RANGE

L. K. H. Lu, W, B. Rockwood, P. C. Warner
Westinghouse Electric Corporation
Sunnyvale, California

and
R. G. DeJong

Cambridge Collaborative, Incorporated
Boston, Massachusetts

An integrated analytical scheme for Marine Gear System Dynamics is presented
in this paper, The work can be divided into three parts: Gear excitation
source prediction, response calculation in the low frequency range, and
average response estimation in the high frequency range.

Various sources of gear mesh excitation are considered by M~.rk in his
excellent analysis (1), However, for modern precision ground gears, the
source of primary interest Is likely to be that portion of the static
transmission error whose frequency is the tooth meshing frequency.

This is the case treated herein. In this work, the steady component

of static transmission error and the first harmonic of mesh tone
component of static transmission error are calculated from a solution

of the mesh contact problem, A simplex aigorithm proposed by

Conry & Seireg (2) is used to solve the gear contact probiem.

Marine gear-turbine systems are comprised of individual components
connected by bearings, mounts and gear tooth contacts. Methods best
suited for response calculation of such a complex structure depend
on the frequency range of interest as well as the properties of the
methods. In the low frequency range, finite-element analysis,

FEA, may be used, For intermediate and high frequencies when many
modes participate in the response, our experience (3,4) indicates
that Statistical Energy Analysis (5), SEA, offers a preferred
solution. In order to demonstrate the feasibility and validity of
the above procedure, a simplified gear-turbine problem is analyzed.
The results are presented and discussed,
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INTRODUCTION

Assoc lated with the operation of most
machines are variable forces which cause
vibration. These vibrations are generally
transmitted to the surfaces of the machines
from which they radiate sound as illustrated
in Figure 1.

The principal source of vibratory
excitation of many accurate gears is the
unsteady component of the relative angular
motion of pairs of meshing gears. A pair
of meshing gears with rigid, perfect,
uniformly spaced involute teeth would
transmit exactly uniform angular motion.
However, the teeth of real gears contain
machining errors, elastic deformation,
tooth wear, profile modifications and other
nonidealities. Such effects give rise to
fluctuations in the angular motion.

The dynamic properties of a structure
can influence noise generation, noise
transmission, and noise radiation. The
input forces may have their effect amplified
by structural resonance. Structural charac-
teristics and isolation design also determine
the amount of vibrational energy which flows
from one element to another in a structure,

If the dynamics of a structure are
understood, structural modifications or
damping treatments can often be made to reduce
the nojse transmission or radiation. Tradi-
tionally, the techniques used to solve
dynamics problems in complex mechanical
equipment include finite-element analysis,
and lumped-mass methods. At low frequencies,
where the modes are well spaced, both the
lumped-mass and the finite~element (FEA)
methods can work well,

Because of the complexity of many
practical structures, however, the use of a
sufficiently detailed FEA model of the
structure, for use over an appreciable
frequency range, can become cumbersome and
expensive,

As the frequency of interest increases,
more local modes appear, and the mesh size
must decrease to maintain accuracy. As a
consequence, conventional FEA methods often
are very expensive to use, or fail to provide
a satisfactory solution,

An alternative to conventional methods
for frequency ranges with high modal
density is Statistical Energy Analysis
(SEA) (5). SEA calculates the average and

standard deviation of RMS response of
structural subsystems in a frequency band.
Because it does not seek to calculate discrete-
point response, SEA is not succeptable to
degration of accuracy at high frequencies,

e sy i iy T IACr AN AR g P 1ol A - - -

In fact, the accuracy increases with modal
density. In addition, the detailed peaks and
toughs of high modal density frequency
response functions are typically variant from
one unit to the next, which makes a statisti-
cal description of the vibration more meaning-
ful, as well as easier to interpret (Figure 2)

A gear system analysis scheme has been
deve loped which utilizes the relative merits
of both the FEA and SEA technigues. The
stretegy involves calculating mesh tone
excitation by a quasi-static simplex solution
to the nonlinear gear contact problem. Subse-
quently, this excitation is applied to a
NASTRAN FEA model of the system, employing
substructural modal synthesis at low
frequencies, and an SEA model at intermediate
and high frequencies, The scheme is illustra-
ted in Figure 3. In this way, gear system
dynamics may be analyzed across a broad
frequency range.

The excellent analysis of transmission
error by Mark (1) is extremely useful,
particularly for identification of source for
the varlous components of excitation, To
actually perform the complete analysis implied,
however, requires a comprehensive, detailed
description of tooth surface geometry under
load, and the actual thermal and centrifugal
environment. To acquire these data is an
onerous experimental and analytical task.
Fortunately, for a modern precision ground
gear, the noise signature is dominated by
vibration due to a small number of sources.
The principal source is usually that causing
mesh tone vibration and its harmonics.
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analyzing each separately, The procedures
follow closely those used by Seireg and
Conry (2,7). They are also similar to
those in Refs. (8-11) for helical gears and
Ref. (12) for spur gears. These works are
extended by applying finite-elements to
evaluate major components of the compliance
matrix.,

Because the areas of contact are unknown
before the problem is solved, discretization
at the contact points involve more unknowns
than simultaneous equations. A simplex-type
algorithm was devised by Conry and Seireg to
handle this problem, and was found to be very
effective.

Q0 T Jaleimd\g 1 Jasenmng 1 3 aseImO 2 »uuuw)
FREQ.

The method is described briefly in the
following.

EXCITATION

Figure 2: Analysis Method Applicable
Frequency Range 1

SOURCE PREDICTION

In modern gears, manufacturing
accuracy has improved to the point where,
with proper control of manufacturing errors,
gear mesh tone is the dominant component
of gear noise, l

s . TRANSMISSION
Gear mesh load distribution is ERRDR, ¢
obviously a dominating factor in gear design. 1

it is the basis of accurate stress calcula-~
tion, and hence, is required to insure
failure prevention. It is also required for
precise noise estimation, and is the basis
for prediction of the amount of profile
modification and end relief necessary to
obtain optimum performance on both counts.

For a gear mesh load distribution
analysis to be used as a design tool, the
calculation procedure must not only be
sufficiently accurate, but must also be
affordable, since design iterations are

often needed before a gear Is finalized. L Y J
Due to the complexity in geometry RESPONSE =~
(tooth, root, helical angle, etc.) and the PREDICTION s
requirement for small element sizes in 1 -3
soiving Hertzian contact stresses, a full 5
three-dimensional finite-element analysis " N
can be costly, time consuming, and will not j -
necessarily suit the purpose. . ‘4
[ ]
In this study, an influence coeffi- i -
cient approach is used to solve the helical § o
gear tooth deflection and load distribution -
problem, The required '‘compliance matrix', - i s ~
deflections due to unit load in a discre- HZ bl N
tized tooth contact zone, is obtained by . o
separating the effects of tooth, gear rim, Figure 3: integrated Gear System Dynamics i
pinion, and local contact deflections, and Analysis ‘
. 3
4,
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EQUILIBRIUM EQUATIONS

When two gears asre in mesh, the
following conditions exist:

1. Geometrical compatibility at each contact
point; l.e., Initial separation + elastic
deformation - rigid body spproach = final
separation.

2. Load compatibility, i.e. Summation of
contact forces = applled load,

3. When there Is separation at a point,
there is no load.

The above conditions can be expressed
mathemat ically Iin the following manner:

= [k1if} ¢ {e}a » {11ty « {3
feliFl « w

Either F; = O or Y;s0

and F;20, Y20, A20

where: [K] is the total iInfluence
coefficient matrix.
fe} is a column matrix of
elements unity.
LIJ is an identity matrix.
{8} is the initial separation

vector,
is the mesh transmission
error.

{v} is a vector of "slack"

variables.
{F} is a vector of forces.
W is the total applied load.

Equation (1) is written for N dis-
cretized contact points in the contact zone
as shown in Figure &4,

Figure 4: Tooth Contact Zone

INFLUENCE COEFFICIENTS

Equation (1) is solved by a modified
simplex algorithm, The general method may be
found in the literature (2). The most
difficult part of gear mesh excitation pre-
diction is the calculation of the influence
coefficients, When two gears are in contact,
the deformation of the teeth due to loads can
be summarized by four influence coefficients.

They are Ky = Tooth deflection relative to the
rim.
Kq = Gear rim deflection
Ky = Pinion deflection
Ky = Hertzian deformation at the load
point,

Each is illustrated in Figure §,
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Figure 5: Influence Coefficient Components
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Due to the complexity of the geometry,
three-dimensional finite-element analysis is
employed to determine accurately the required
influence coefficients (Figures 6 and 7).
Other effects such as thermal distortion, gear
rim centrifugal "fiyout', and tooth modifica-
tions may be estimated separately and input as
separations between the teeth (Figure 8).

uYour
THERAAL
DIETOIT N

T

Figure 6: Tooth Compliance FEA Model

Figure 8: Initial Separations

STATIC TRANSMISSION ERROR

A computer program, WEDGAP (Westinghouse
Electric Dynamic Gear Analysis Program), has
been developed to solve equation (1) at several
increments of gear rotation anqle. Load dis-
tribution and mesh transmission error in the
contact zone are obtained at zach increment
(Figure 9a,b). The load distribution is
desirable for fatigue, pitting, and scuffing
calculations,

If the ''roll-angle' sequence of mesh
transmission error is Fourier-transformed into
the frequency domain, average (DC), as well as
tooth mesh-harmonic (AC) components of the mesh
transmission error are obtained, This quasi-
static estimation of dynamic response yields
vibratory excitation levels of the gear mesh
at the tooth mesh harmonics.

Figure 7: Gear Rim Compliance FEA Model
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SYSTEM RESPONSE IN THE LOW FREQUENCY RANGE
BY FEA

For marine structures, FEA models on the
order of thousands of degrees-of-freedom are
not unusual. However, in rotating machinery,
due to the characteristics of the bearings,
isolators, and damping treatments, we encounter
nonproportional damping. That is, the modes
are complex quantities, For a large model, the
cost of solving such a large eigenvalue
problem is prohibitive, if not impossible. In
addition, since effects such as static trans-
mission error, rotation unbalance, and shaft
out-of=-round can best be expressed in terms

of rotational frequency, the solution becomes

a complex frequency response probliem. In order
to reduce the cost of computation, substruce
tural modal synthesis appears appropriate.

The mathematical background of modal
synthesis can be found in the literature (13),
hence is not repeated here. Essentially, a
complex structure is divided into a convenient
number of substructures, For each component,
the undamped free vibration modes are calcula-
ted. |In gear rotating machinery, the true
displacements of the components often resemble
those in free vibration, Therefore, fre
constraint modes of the component are usually
sought. As each component is simpler than the
total structure, the risk and cost of modelling
error are minimized. The component modes of
each substructure are then combined via their
boundary compatability conditions to obtain
the total system response. A major advantage
of the method is its ability to employ a
limited number of modes to mode! a substructure
possessing many degrees of freedom, thus
reducing the computational cost.

Substructural modal synthesis lends
itself well to the design of vibration
reduction treatments. The effects of
constrained=-layer or free-layer damping
treatments may be estimated by the modal
strain energy method (14), and incorporated
as modal damping of individual components.
Isolators may also be conveniently applied
between subsystems. The effectiveness of
vibration isolation is not only influenced

by the stiffness of the isolator, but also

by the dynamical characteristics of the
structures they connect {(5). The isolator
can be selected while the structure is

being designed, However, very often isolators
are chosen after the main components are
determined, To achieve the best vibration
attenuation, the dynamical characteristics of
all the major parts of the structure must be
carefully considered. Usually, the design
procedure is iterative., Therefore, the
method used to design the isolator must
include an efficient evaluation of the tota)l
system, Substructural modal synthesis offers
an ldeal solution to this problem, Physica)
properties of the isolator and bearings are
inserted between each component, along with
the component modes, The forced vibration
response thereby employs an accurate model of
each influence,

SYSTEM RESPONSE IN THE HIGH FREQUENCY RANGE
BY SEA

Why SEA?

When the frequency of interest increases,
the number of modes which contribute to the
response increases. Eventually, local modes
begin to participate, and the number of modes
can increase sharply., This is especially true
for a complex structure such as a gearcase.

In these circumstances, a coarse-mesh finite-
element model can be too stiff to represent
the true structural behavior, The mesh size
must be reduced to the order of a quarter-
wavelength, Therefore, at high frequencies,
it becomes increasingly difficult to dis-
cretize a structural model sufficiently., A
further difficulty is that the detail of the
structure is undetermined in the initial design
stages. A problem inherent in a discrete
response calculation, such as FEA, is that it
can be unreliable when oversimpiifications are
made in modelling complex structures, At
frequencies where the modal density is high,
the simple model can only account tor the
activity of a small number of global modes.
Thus, in basing a conceptual design on a dis~
crete response model, errors may be made,

The designer needs a method for estimating
intermediate to high frequency response before
the design is solidified,
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The SEA procedure involves modelling
groups of similar modes as individual
“subsystems'' in a given structure. Power
balance equations are then developed for
the entire system., The sample case of two-
subsystem interaction is illustrated in
Figure 10. Power in input to subsystem 1,
and is output either as dissipation, or to
subsystem 2, where it must be dissipated,

TRANSFER
wmeor ——o 1 2
) )
DISS\PAWD DISSILATED

Figure 10: SEA Power Transfer

The parameters controlling the balance
are '"dissipation" and '‘coupling' loss
factors, which indicate the strength of each
power flow path, The equations may be
expressed in the following matrix form for
the general case:

N ' J
" ’.E’ T —ny ves -ty E; Tin /
j=
s 1
-ty u + 2},“, oo —fyy Ey T in Iu
ot
N=1]
w . < woe El’"‘ | |*h/e
Where

MNi = The loss factor of the subsystem i
Mii = Coupling loss factor

€: = Energy stored In the subsystem
i
"~
W = Radian frequency

= [(nput power
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Given the resultant internal energy
associated with each subsystem, time-average
response is obtained for 2 desired frequency
band.

SEA BENCHMARKS

Because the application of SEA to marine
structures is relatively recent, an effort
to benchmark SEA against test data and other
analytical techniques is ongoing. Although a
compilation of all such projects is outside
the scope of this report, two examples serve
to illustrate the results of the study.

As marine structures are largely groups
of connected flat plates, it was felt that a
compar ison of SEA with the closed form plate
solution would provide a reasonable result.
The thin-plate, simply supported form was
chosen to obtain a classical calculation of
the special and frequency average response
which SEA seeks to estimate. A rectangular
plate of typical dimensions was divided into
nine segments, and the center of a corner
segment was driven, For each segment, the
classical point vibration levels were spatially
averaged for the low, center, and upper fre-
quencies of a third octave band. These results
were compared with SEA for several frequency
bands and levels of damping (Figure 11). They
show that SEA yields a good average response
estimate, differences being on the order of a
few dB,

A benchmark of SEA against test data for
a mar ine structure was established for a
reduction gearcase. Vibration levels from an
actual unit are compared with those given by
SEA and a quarter-scale model in Figure 12.
The results show SEA closely following the full-
scale data, which are also accurately modeled
by the precision quarter-scale model,

These and other efforts (Figure 13) to
benchmark SEA show it to be a powerful tool
for intermediate and high frequency calcula-
tions, At low frequencies, SEA generally
gives a good estimate of the average response.
However , when the modes are well spaced, the
average response is dominated by the peaks.
There, the discrete-frequency response is
often needed.
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DES!IGN EXAMPLE

The concept of integrated gear system
dynamics snalysis is spplied to a marine
propulsion unit. The system under investi-
gation consists of a double reduction gear
train (Figure 14) driven by two turbines, and
the supporting subbase. Twenty-two bearings
serve to mount the gears and turbines to the
subbase structure, which itself is spring-
mounted to the ship's foundation structure.

A simplified finite-element model is
shown in Figure 15. The gearcase and bull
gear are modelled by plate elements, while
the first reduction gears and shafts appear as
concentrated masses on beams. The subbase
is modelled by plates and beams, and the
turbine shafts are represented by beams. The
138 plate, 110 beam, and 40 elastic elements
are believed to adequately account for the
essential dynamical features of a typical
propulsion unit,

The FEA is carried out in two steps.
First, the natural frequencies and mode
shapes of the bull gear, turbines, and sub-
base are extracted., The resulting 72
eigenvalues and eigenvectors, plus each of
the bearing and support stiffnesses and
damping, are recombined via modal synthesis.
The low speed gear static transmission error,
£ (w), calculated by WEDGAP, is input as
relative displacement excitation at eight
tooth mesh locations. The problem is solved
by the complex direct frequency response
method of NASTRAN SOL 71 (6).

The SEA model is comprised of 79 sub-
systems and 148 junctions, schematically
represented in Figure 16, §(w) is again
input at the second reduction mesh. The SEA
code SEAM* js used to compute the response at
the subbase mounting points,

Typical FEA and SEA responses are
compared in Figure 17. They show agreement
to within 10 dB from 80 to 500 HZ. In this
range, the FEA and SEA results can be used as
cross~checks of both models. At low frequen-
cies, before the structure 'breaks up" into
a large number of modes, the SEA model over-
predicts the response., Above 500 Hz, the
FEA response drops dramatically, indicative
of saturation,

* Copyright Cambridge Collaborative, inc.

CONCLUS ION

The integrated gear analysis procedure
has been shown to provide complex turbine-
gear system response over & broad frequency
range. Intermediate frequencies serve to
confirm consistency between FEA and SEA models,
while low and high frequency calculations
utilize the strengths of each, The procedure
permits maximum flexibility in designing
vibration isolation and damping treatments,
so that optimization can be more readily
achieved,
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COUPLED TORSIONAL-FLEXURAL VIBRATION OF A GEARED SHAFT

SYSTEM USING FINITE ELEMENT ANALYSIS

S.V. Neriya, R.B. Bhat, T.S. Sankar
Department of Mechanical Engineering

Concordia University

Montreal, Quebec H3G IM8 Canada

The coupled torsional-flexural vibration
due to unbalance and geometrical eccentricity
in the gears is studied. The coupling action
{s identified through the analysis of the
gear motion and this effect is included in
the finite element model of the system. The
free vibration problem i{s solved to obtain
the natural frequencies and mode shapes.
Normal mode analysis is employed to obtain
the dynamic response of the system to excita-
tions arising from the mass wunbalance and
geometrical eccentricity in the gears. The
response exhibits peaks not only at the sys-
tem natural frequencies, but also at those
frequencies which are related to the system
natural frequencies through the gear ratfio.
The response spectra for various parametric
combinations are presented and discussed,
The finite element formulation in which the
effect of torsional-flexural coupling due to
gear pairs are included is found to be a very
convenient method to study complex geared
shaft systems.

NOMENCLATURE

Et average flexural damping of
the gear tooth

{c] generalized global damping
matrix

Cn lumped torslional damping at
the motor

Cq lumped torsional damping at
the dynamo

d diameter of the beam element

E modulus of elasticity of the
beam element

F transmitted force

{r} generalised force vector

G modulus of rigidity of the

beam element

13

NOMENCLATURE (cont'd)

I

m2

M1

M2

[M)

lps}k'{pc}k

{a}

moment of inertia of the
driving gear

moment of inertia of the driven
gear

moment of inertia of the motor

moment of inertia of the
dynamo

average flexural stiffness of
the gear tooth

stiffness of the rolling
contact bearing 1In the
y-direction
stiffness of the rolling
contact bearing {n the
z-direction

generalised global stiffness
matrix

length of the beam element
mass of the driving gear
mass of the driven gear

mass of the driving gear
tooth

mass of the driven gear tooth

generalised global mass
matrix

mass per unit length of the
beam element

principal coordipates
corresponding to the k sine
and cosine excitations

generalised displacement
vector

ra7V|ous PAGE

S BLANK

TR vy

o

v e s

- e

v e e ey

¢ o @ 0

S v e v e e

ALPLIAS

PRI




AN

{A.

25702

L
.l

NN XN X

(i R
AP RERrY

RS
a4

N .
LR N RN

e ¥
el

REOLM

!

Ay, ‘i_ D

SRR

(]
I 3

- . WY .. [Nl Wy o el e g oty

NOMENCLATURE cont'd.

ry base circle radius of the driv-
ing gear

r, base circle of the driven gear

Uy mass unbalance in the driving
gear

U2 mass unbalance in the driven
gear

[Y] diagonal damping matrix

€4 geometrical eccentricity in the
driving gear

€5 geometrical eccentricity in the

driven gear

0p9 angle between the directions
of the eccentricity and unbal-
ance for the driving gear

Ops angle between the directions
of the eccentricity and unbal-
ance for the driven gear

[x] diagonal stiffness matrix
Ag ith eigenvalue

[u] diagonal mass matrix

{o,} ith eigenvector
INTRODUCTION

Noise and vibration are serious problems
in the operation of a geared shaft system.
The problem is complicated by the fact that
the torsional and flexural vibrations are
coupled which makes the analysis more dif-
ficult, The system is excited during the
operation by the forces originating from
incorrect mounting, unbalance in the gears
and profile errors. Mahalingam and Bishop
[1] determined the dynamic load due to exci-
tation from a static transmission error which
encompassed all forms of error in the geared
system.

Mahalingam and Bishop [1] determined the
dynamic load due to excitation from a static
transmission error which encompassed all
forms of error in the geared system. Lund [2]
considered coupling in the torsional-flexural
vibrations in a geared system of rotors. He
analysed a system with high damping and ob-
tained the asystem dynamic response in terms
of the complex eigenvalues and eigenvectors.
He also studied the stability of the rotor
system. Iida et al [3] studied a geared
shaft system 1including the effects of
torsional-flexural coupling. The geared
shaft aystem was described as a 4 DOF lumped
mass model where the driven shart is
considered flexible in bending and the driv-

LA LA IR CLOG Ol D SN DGR A CI RO

ing shaft s considered rigid. He obtained
the response due to mass unbalance and geo-
metrical eccentricity. Neriya et al [4]
extended this study considering both the
driving and driven shafts flexible in bend-
ing. The flexibility of the mating teeth was
considered in the analysis, The frequency
response and subsequently the dynamic tooth
load were obtained by normal mode analysis.

In this paper, the geared shaft system
is modelled by using the finite element meth-
od. The effect of coupling between torsional
and flexural motions is identified by analy-
sing the gear mction and is included in the
finite element formulation. The flexibility
of the bearings supporting the shafts |is
considered in this {investigation and the
frequency response i{s then obtained using the
normal mode analysis, The finite element
method offers significant advantages in ex-
tending the simple geared system considered
into a train of geared rotors as well as the
case of {introducing flexibility and damping
in the bearing supports.

ANALYSIS

A schematic representation of a simple
geared shaft system is shown :n Fig. 1. A
sectional view at the gear pair location [see
Fig. 1] is shown in Fig. 2 and it shows the
relative positions of the driving and driven
gears, 0. There exists a "force" coupling
between the translational motion of the gear
center y, z; and the rotational motion of the
gear. At the gear location they correspond
to the flexural motion of the shaft carrying
the gear and its torsional motion. Fig. 3(a)
shows the spring mass representation for the
driving gear. The mass of the driving gear
my i3 denoted by the mass of the gear mg,
tooth in contact. The coordinate Z¢
describes the gear tooth motion and is in a
direction parallel to the line of action of
the gears. The time average stiffness and
damp&ng of the gear tooth are denoted by Et
and Cy respectively. The tooth stiffnesses
are very high compared to the shaft stiffness
and their variation with time does not
significantly affect the natural frequencies
of the rotor system. kpjand cpq denote the
stiffness and damping of the shaft carrying
the driving gear. The driven gear s
similarly modelled and is shown 1in Fig.
3(b). Tooth separation is not considered in
this analysis and this is incorporated
through the constraint equation Zpq = Zyeo-
The motion of the pair of gears described
above is analysed and it reveals the terms
coupling the torsional and flexural
displacements at the gear locations and the
forces occuring at the gear pair. [Refer' the
Appendix.] The contact ratio for the gear
pair is assumed to be unity.

The finite element discretisation of the
geared shaft system under study is shown in
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Fig. 4. The driving and driven shafts are - .

both divided into beam elements 1 to 6 as L) {qa}k + [e] {qs}k + [K] {qslk = {r,}
shown. The eight nodes of the system k
denoted by a to h, each have 5 degrees of .

freedom after excluding motion in the axial [M] {ac} + [c] {a.} < (k] {ag} = {F,
direction. As seen above, the contact point k k K 'k
of the mating gear teeth has one DOF in the z

5 direction, which accounts for the tooth flex- P k=1,2 (%)
! ibility. The system thus has 41 degrees of Expressi the
freedom, The generalised displacement P ne response IQ} in terms of the

modal coordinate
vector for the beam element described in Fig. s {p} as

5 is given by

{qs}k = [v] {ps}k
iy -21-°x1'°y1-°z1sz~zz'°xz'°y2-°z2}T 5)
lagl, = [¥] (pe), s k=12

The element mass and stiffness matrices
obtained from the consistent formulation are

where [0] is the modal matrix formed by usin
then assembled to form the global mass and the eigenvector |y, }, and {p_} and |p.} ]
» stiffness matrices. The concentrated masses 1 s el ¢
N and inertia (including transverse moment of are the principal coordinate vectors corre-
. inertia) due to the motor, dynamo gears and sponding to the sine and cosine components.
3 gear teeth are {ntroduced into the appropri- Vaing Eqs. 5 in Eqs. ¥ and premultiplying by
- ate locations in the global mass matrix. The [¥]" results in uncoupled equations in the
.t stiffnesses of the rolling contact bearings modal coordinates of the form,
~ are Iincluded in the analysis. The terms .
» arising from the coupling between the tor- U (Poy) + Y, (Poe) + k(P -
. sional and flexural motions [Ref(4)] are now 10el%y 181’y 7 51 31)k (USI)k
.; introduced into the appropriate locations in (6)
. the global stiffness matrix. The global . - .
i~ force vector is also formulated on the basis wi P ) *+ Y, (P.,) +x;(P..) = (0..)
. of [4]. These are given in the Appendix 1Pethy ~ M et?y 7 Bt eidy e’y
% along with the notations used for the cor- h 1
- responding degrees of freedom as illustrated where '1‘ o 2
. in Fig. 4. =2 ..
o where u; and k; are the elements of diagonal
- The equations of motion of the 41 DOF i 1 80
- geared shaft system can now be written as matrices [u] and [«] given by
: 3} . eIl
g [W){a} + [cHal + [kMab = {F} (0 (] = [o)" (] [v]
- . [g]T
d The homogenous part of Eq. 1 neglecting damp- [‘] [*] [K] “’]
| ing 1s given by and v, is the equivalent damping coefficient
A - in each mode.
N (MH{a} + (] {a} =0 ° (ogg) and (g,;) are the
X elements of the generalised force vectors
xy and is solved to obtain the eilgenvalues )y {03"( and [oc} » given by
e and the eigenvectors {y;} of the system. K
- T
. [ = F
it The force vector {F] in Eq. 1 has the { s}k (o] { slk
i excitation consisting of frequencies w, and
. w, as: ! {Oc}k = [T {Fclk; k =1, 2,
- {Fl={Fg} 8in wyt+{Fy}osin wyt+[F,} cos wyt The solution of Eq. (6) ylelds
.: + [Foly cos wpt (2)
- (og,)
- where 8,4, 850, 8¢y and Op, have been assumed (poy) = oshs
~ to be zero. The corresponding response also si K (- 2 . )+
4 can be expressed in a form involving the two we Mgt Ky I uy)
. frequencies as ("ei)
fal-1 | | (Peg), - — ™
’ al=laglysin wyt+{ag}8in wyt+{a,} cos wyt K (- ugs kg) * 30
~ + {q.}, cos wot 3)
'S { cl2 2 Kat, 2
Using Egs. 2 and 3, Eq. 1 can be written as =12 ... 0
d four separate equations.
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Using Eqs. (7), (5) and (3) we obtain the
system dynamic response |qj. Since the
response involves two frequencies wy and Wy
the total response has the form

y = qqysinfugt « ¥1g)+qpy8inluytevyy)
= q1JsinA1+q2J sin 12

A-d,
2
A

Aq=A
Yeos (—1—2)
2

- (Q1J‘q2J Ysin(

+) Ag+h
2>sm(—’2——2) (8)

+ (Q1J - QZJ)OOS( 2

Hence, the response is an amplitude modulated
harmonic phenomenon. If wy and w, are close
to each other, this will result in beats.

NUMERICAL RESULTS

The details of the geared shaft system
used the stiffnesses are to obtain the numer-~
ical results are given in Table. 1. The
pedestals are assumed to be flexible in both
y and z directions and the stiffnesses are
denoted by k v and k z respectively. The
details of tr¥e beam eiements comprising the
finite element model are given in Table 2.
The system natural frequencies and their gear
ratio multiples in the range 0-80 Hz are
given in Table 3. The zero natural frequency
corresponds to a torsional rigid body mode.

The time domain response at two individ-
ual frequencies are plotted in Fig. 6 and
Fig. 7. Fig. 6(a) shows the time domain
response at the driven gear location at a
frequency of 37 Hz which is very close to a
system natural frequency. Fig. 6(b) shows
the same at the driving gear 1location.
Fig. T(a) shows the time domain response at
the driven gear location at a frequency of 50
Hz which is away from a system natural fre-
quency. Fig. 7(b) shows the same at the
driving gear location.

The frequency domain response is plotted
for the flexural responses at the gear loca-
tions. Fig. 8 shows the response in the z
direction at the driven gear location. The
system shows peak responses at the system
natural frequencies corresponding to modes 2,
4, 6 and 8, and also at the frequencies re-
lated to the modes 2, 4 and 6 by the gear
ratio (Table 3). The natural frequency of
mode 8 when multiplied by the gear ratio is
found to be outside the frequency range of
interest. Three cases corresponding to vary-
ing unbalance and eccentricity are plotted.

The response in the 2z direction at the
driving gear location is shown in Fig. 9.
The system shows peak responses at the system
natural frequencies corresponding to modes 2,
4, 6 and 8, and also at frequencies related
to the modes 2, U, and 6 by the gear ratio
(Table 3). The natural frequency of mode 8
when multiplied by the gear ratio is found to
be outside the frequency range of interest.

16

Three cases corresponding to varying unbal-
ance and eccentricity are plotted.
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u,mf cos (uwqt + 8,45 + 6p¢)

=y e w008 (wpt* 850) - keeosinlust + 8,55) *

sumwd sin (upt + By + Bpy)

“2“5 cos (wyt * 80 * 0g2)

¢y lesuycos(wyt + 8,0) + €qwycos{ugt + 81q)

+ky [eosintuyt + 850) + eqsin(ugt + 8,9}

-Etr1e1w1cos(e1o + wyt) - Foeqco8(8,9 + wt)

-itr1e1sin(61o + wt)

-Etrzezmzcos(ezo * wpt) + Foe,c08(6y9 *+ wot)
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» TABLE 2 A
, ¢
Y Element No. Length £ Diameter d Mass per unit 'E
. mm om length ‘
m kg/mm .
.’ N:
‘ 1 300 15 1.41 E-3 It
i
. 2 300 20 2.15 E-3 L
‘n
N 3 600 20 2.51 E-3 -
4 600 30 5.655 E-~3 -
. 5 300 30 5.655 E-3 '
i e
i 6 300 25 3.93 E-3 NS
-: ..
3y
f TABLE 3 +
: System Natural Frequencies and their Gear Ratio Multiples in the Range N
s ‘o
0 - 80 Hz >
> )
" Mode No. System Natural System Natural 3
X Frequency Frequency Gear !
- Ratio .
y .
1 zero zero
: 2 7.78 15.56
! 21.27 42,54 .
Y 4 22.96 45.92 :
= 5 29.22 58,44
¥ 6 35,46 70.92 :
:j 7 36.57 73.14 N
> 8 44,09 - g
) 9 71.39 -
- 10 71.57 - -
. 1 72.24 -- -
,. :
: -
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INFLUENCE OF AN AXIAL TORQUE ON THE DYNAMIC BEHAVIOR

OF ROTORS IN BENDING

R. Dufour, J. Der Hagopian, M. Lalanne
I.N.S.A.
Laboratoire de Mécanique des Structures
U.A. C.N.R.S. 862
20, avenue Albert Einstein
69621 Villeurbanne - France

Today it is necessary to predict with great accuracy the dynamic
behavior of rotating machinery components at the design stage.
This paper focuses on the secondary effect on the dynamic charac-
teristics of rotors in bending, introduced by axial torque. The
influence of a constant and an harmonic exciting torque has
been studied both experimentally and theoretically in this work.

INTRODUCTION

The dynamic characteristics of rotating ma-
chinery must at this time be predicted quite
accurately. The main effects of rotor dynamics
are now well known and taken into account in the
equations and the corresponding computer programs.
This paper considers the secondary effect of an
axial torque in view of including its influence
systematically in the analysis of a rotor.

tested an original apparatus. They have shown
the difficulties in obtaining a pure axial tor-
que and have observed, with a pulsating harmonic
torque, zones with instabilities.

Unger and Brull |6} have obtained theoreti-
cal results, using a quasi-snalytical Galerkin
type method. They consider both a constant axial
torque and an harwonic pulsating torque at the
same time. As did Msu |7| they prove the exis-
tence of three kinds of instabilities for coupled
Mathieu's equations. In the type P the system
vibrates with period P. In the type 2P the system
vibrates with period P, the excitation period
belng 2P. The last kind of instability is

wetw.)/k with i,j,k = 1,2,... vhere the system

gra fes at frequency wj or wj for the excita-
txon (witwj)/k. The work presented in what
follows is mostly devoted to an experimental set
up in which the influences of a constant axial
torque and of a pulsating torque can be simul-
teanously observed. Solutions of equations have
also been presented. A matrix for a constant
axial torque has been included in a finite ele-
ment computer program |8].

Eshleman and Eubanks |1]| have presented the
equations of motion for rotors in bending sub-
jected to several szecondary effects such as
constant axial torque. The solution of the equa-
tions shows that the stiffness of the shafts
decreases as the axial torque increases. This
effect is predominant over the other secondary
effects if the slenderness ratio r = R/2L is
< 0.0025. Zorzi and Nelson |2| have calculated
the virtual work of the components of the axial
torque and deduced a matrix to be used in a
finite element formulation. This matrix is non-
symmetric and must be added to the stiffness
matrix. They have applied that formulation to
simple examples : i.e. a simple beam with boun-
dary conditions either simply-supported or
clamped at both ends. Ziegler |3| has dealt with
nonconservative systems and given for different
boundary conditions the values of critical tor-
ques leading to buckling. Willems and Holzer |4|
have published results on the critical speeds of
a rotating shaft subjected to a constant torque
and & constant axial force.

Eshleman and Eubanks |5] have built and

EQUATIONS

The dynamic behavior of a constant circular
cross-section Euler-Bernoulli beam, Figure 1,
subjected to an axial torque T is defined in
absence of other external forces by the two fol-
lowing equations presented in |1, [4] :
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BRI N N W o

3w
a2
32y
at2

pS + Bl ——

cross section area

diametral area moment of inertia of the
cross section

Young's modulus

mass per unit volume

displacement components of the center of
inertia of the beam cross section.

Fig.l! - Beam reference axis

The two equations can be written more com-
pactly. Introducing the new variable :

z = w+ iu ; G = /=D (2)

it comes

Y2 .
+ EI — - iT
at? vt ay3

P4

32z 33z

oS = 0 (3)

For convenience equation (3) has been writ-
ten in a non dimensionnal form :

2 4
p2 £ 2f
at g ag3

3
-y 2F . %)

with
-y . -2 . N T
E=¢ s f=7 i Hegr 5 9 & LG

The non dimensionnal torque H will be :
H = Hy + H) Cos nt (6)

where Hy and H) Cos nt are respectively the cons~
tant and the harmonic pulsating torque.

EXPERIMENTAL SET-UP

The set up has been designed for the dyna-
mic study without inclusion of the rotation
effect in order to have well known boundary con-
ditions, (see Figures 2-5). The experiments have
been performed with a beam clamped at both ends
(C-C) to have a better control of the axial tor-
que. With those boundary counditions the torque

remains axial during the experiments.

Constant torque experiment (H = Hj)

The torque effect corresponds to the last
term of equation (4). The larger Hythe higher is
the influence of Ty, Equation (5) shows that for
a given T,it is necessary to have a long beam
(L) with a small cross section (I). A high stress
steel is thus used, whose characteristics in SI
are :

E = 2.06 N/m?

p = 7850 kg/m?

The dimensions of the beam experimented are
L, length = 1.845 m
D, diameter = 3.10-3 m.

The maximum torque imposed islqmax = 2,68 N.m

andﬂqnax = 6.

In order to avoid the influence of gravity
the experimental set-up presented in Figure 2 is
vertical. A force gage (D is fixed at the upper
end of the beam, Figure 3. That gage allows the
measure of any axial force which can thus be eli-
minated. At the lower end, Figure 4, the beam is
fixed in a parallelepipedic steel support
whose only motion is axial, (to avoid axial for-
ce and keep the beam clamped). The axial torque
is obtained by rotating . The resonant fre-
quencies of the system are then obtained by a
conventional way, magnetic excitation and detec-
tion by proximity probes, for Hyvarying from O
to 6.

Constant torque and harmonic axial torque
(H = Hy + H; Cos nt).

An electrodynamic shaker, Figure 5, is used
to impose the harmonic torque. Needle bearings
are used, see part (:), the beam is thus clamped
at L; = 1.435 m from the upper part (:). The am-
plitude of this torque is such that H, g 0.02.
The instability zones are obtained by a point by
point frequency sweep between 0 to 60 Hz.

SOLUTION OF THE EQUATIONS (H = Hy)

Equation (4) has previously been solved |1|
by the method of separation of variables. The
frequencies are then obtained from the zero va-
lues of the determinant associated with the boun-
dary conditions. This paper presents a simple
method which makes the phenomena i.e. frequencies
and mode shapes, easier to understand. The method
is a Galerkin type method and is used for two
kinds of boundaries.

Simply supported beam (SS).

The solution is sought using the hypothesis
of separation of variables :
L on(c).wn(:) €)]
with, n being an integer
iHgE/k.
¢,(¢) = Sin nng.e (8)

Sin nng is the well known mode shape for SS beams.
Here eiH0&/k takes into account the rotation due
to the torque. The coefficient k is obtained by
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the application of the boundary conditions : ben-
ding moments and displacements equal to zero for
E=0, £ = 1. The conditions on the displacements
are directly included in equation (8). The ben-
ding moments are :

3%u aw
m, = El1Z=-7T, 2 )
z 3y2 ay
e _gpd%w__ 3u
m EI "> To 3y (10)
Equations (9) and (10) can be combined into :
m o= -m +im (11)
This gives : )
Lkt QU -g-é- -0 (12)
ag?

Equation (12) must be valid for £ = 0 and £ = 1|,
the only solution is k = 2, Thus equation (7)
becomes : iHgE/2

fn = Sin nnE e wn(t) (13)
The solution to equation (13) is introduced in
the equations of the motion (4) and the factors
of the sine and cosine functions are set equal to
zero. This leads to :

2,400 bl _ -
| A (n*r ) ¥ 0 (14)

ﬂoz
oy (—— - n?x2) ¥y = 0 (15)

From (14) one has :

wn = a Sin mnt + bn Cos mnt (16)
with the frequency
Ho“
w, = % ot - o an
Due to (5), (17) is :
Hy
1 EI
= bl oo ==
wy n“x ; 2 55 (18)
X 2
n I
- —_— == 19
Wy 2 o8 9)
With
2 4ol Ho
xn - nw’ - IT_ (20)
Hp"
SRR

The frequencies w_ are zero for Hy = * 2unm,
which are the exact values of the buckling tor-
que. Equation (I5) shows that solution (i3) is
the exact solution for : Hy = 0 and Hy = * 2nw.

Clamped-clamped beam (CC)

The CC beam is more difficult to compute
than the SS beam, as it is not easy to suggest
a very convenient hypothesis for the displace-
ment. For a CC beam with Hy = 0 it can be obser-
ved that :

¢n(5) = Sin wf.Sin nng 21)

gives a convenient value for the first frequen-
cies. The X, values, see (19), are showmn Table 1.

Hy = 0 EXACT VALUE  |APPROXIMATE VALUE
X2 22,37 22.79
X,2 61.67 63.2
X32 120.9 115.1
X2 199.8 185.4

Table 1 : - C-C beam -~ Exact and approximate
values of beam coefficients.

As a consequence of these results the following
displacement function is defined :

¢,(6) = Sinrng.Sin nwg.eiuog/k

where eIHOEIk takes into account the rotation
due to the torque.

(22)

The calculations are performed on a sligh-
tly different way from the SS case. Equation
(22) is used with equation (4). This gives a
second order differential equation in time. The
Galerkin procedure is then used. The equation
is multiplied by Sinnf.Sin nnf df and integra-
ted between 0 and 1. In order to avoid lengthy
developpment only the results are given :

The frequencies obtained are :

~

72 /[2,200-k,) + 43y (2-k;) + 16/3] /ET
L2 EE

wy =

X,2 I
w; = — o5

12

(23)

wz/[lnz (1-k 432 (0241) (2-k ) +(n“+6n2+1 )]ﬁ

o =
n L2
(24)
2
N 1
n Lz OS
with
Ho? 43
N = y k) = T
Kq2n2
1 (25)
Hp? y 2
A, - , kow SnrlZottl .
k272 n n2(4n2+3)

The axial torque is non conservative |3|
and its introduction in the finite element me-
thod is obtained from the virtual work of the
torque. It is easy to introduce the correspon-
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, whose expression
is given in |2|, in a finite element computer
program.

ding nonsymmetric matrix T.

SOLUTION OF THE EQUATIONS (H = Hy + H; Cos nt)

As in the case where H = Hy, a simple method
limited to the types P and 2P is proposed to ob-
tain instabilities. The calculations based on
Galerkin's method are presented only for SS beams.
For a CC beam the conclusions are identical and
the developments are not presented. It is suppo-
sed that the mode shapes are not significantly
modified by the pulsating torque, then equation
(13) is used and equation (4) becomes :

2,00 bl 4 3 g 2,22 Ho®
pw“(t)+[(nn +—2-Hon1r +T6_)
(26)
Ho Hg?
~ (Hg+H; Cos nt) 5~ (3n?n2 + —=)]y (£) = 0
Let
T = nt @27
2
W
§ = 28)
n nz
HoH, Ho2
€. = - (3n2n2 + - (29)

" 2p2y?
then (26) may be written :

Woon(T) + (Gn + ¢ Cos 1) wn(T) = 0 (30)

Equation (30) is a Mathieu's equation. Strutt's
diagram shows the instability zones correspon-
ding to equation (30) with the most dangerous
zones identified for § = 1/4 and 6§ = 1, i.e.

n n
n=2 andn = Wy I3l, {9].

APPLICATIONS
Constant axial torque Hg

The results presented are either analytical
{4}, 6| or experimental. They include also the
formulas proposed here : equations (18) for the
SS beam and equations (23), (24) for the CC beam,
(Tables 2-3). The mode shapes depicted are from
(13) and (22) and given for three values of Hj.
They are presented in a plane perpendicular to
the Oy axis, (Figures 6-7). The finite element
results obtained with 9 elements are in satis-
factory agreement with the frequencies and mode
shapes and are thus not given. It has been ob-
served that the agreement between experimental
and analytical results is satisfactory for the
frequencies, Figure 8. Mode shapes have been
computed, they have been experimentally observed
but not measured.

Table 2 : - S-S5 Beam - anln2 versus torque

Hy= 0 1 2 3 3.5 4 5 6

. X;2 l6] 1 - 0.98 --- 0.94 -— 0.87 0.79
- 22.37 (22) 1.02 1.01 1 0.98 — 0.94 0.89  0.82
. %22 |6] 2.76 -— 2.73 -— 2.68 - 2.59 2.51
22.37 (22) 2.83 2.82  2.81 2.79 — 2,77 2.73  2.69

X32 6] 5.40 -— 5.38  --- 5.32 -— 5.23  5.15

22.37 (22) 5.15 5.14  5.14  5.13 -— 5.11  5.09  5.06

Table 3 : - C-C Beam - xn2/22.37 versus torque
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Fig.10 : Combined resonances instability
".-'-H n=wp +wy
[} 1 4; ;7 : ; [ For instabilities of type P, n = w_ the
beam vibrates at the same frequency as Phe exci-
Fig.8 : C-C Beam coefficients tation. For 1n§t?bi1§ty ?f type 2P, n = 2uw_, the
zone of instability is wide (Fig.9). The modes
Constant axial torque Ho and pulsating are noted v1§ually. For combined instabilities
torque H, Cos nt two frequencies are observed for n = (w +wy)/2
q 1 nt- the beam vibrates with frequencies w; and wpyand
The experiment has been performed with for n = w+w; the beam vibrates with frequencies .
Hy = 3.75 and H; = 0.02. The experimental natu- wy and ws, (Fig.10), The instability zones of R
ral frequencies in rd/s are : this type are also wide.
wy = 37.7 5 wp = 110.6 ; w3 = 216.1 ; w, = 364.4 No other instabilities have been seen in ~

the range considered. The instabilities of type

The beam was excited by a torque whose frequen- P and 2P have been simply explained by the cal-

cy in rd/s is n, as shown in {5| the beam vibra-

tes with the Erequency n culations prosentsd; The fombined resonances \;
. are predicted 1n ‘6. and |7], they could also R

On the other hand during the frequency certainly be predicted by the method given here. 9
sweep between 0 and 60 Hz zones of instabilities Te 1-*ieve this, equation (13) would be a sum of v 4
were observed. The results of this experiment exprescions corresponding to n = 1,2,3. When -
are presented in Table 4. The instabilities are Hoo- the instability of tvpe 2P is neither pre- B
detected by a two channel oscilloscope, where . 4 fev oang mot observed. Y
and r, could be easily compared. In addition a ~
spectral analysis of a signal piven by a non d
contact probe is performed, this analysis is :4
very useful to detect the nature of the instabi- e

lity.
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TORQUE FREQUENCY n BEAM FREQUENCY INSTABILITY
) rd/s ZONE rd/s CONCLUSTON TYPE
¢
n = 37.7 narrow W] n = w P
X
wy n = 2w 2P and
N 73. s n g 81.7 wide or or or
- w; and wy n = (wj+wy)/2 | combined resonances
) n = 110.6 narrow wg n=w P
n = 216 narrow w3 n = w3 P o
N
.
'; 221. g n s 228 wide wy n= 2w 2P "
2 254. s n g 270. wide wy and w3 n = wytw; combined resonances >,
S o
, n = 364 narrow Wy n = wy P ,
” Table 4 : - C-C Beam - Pulsating torque influence
3 CONCLUSIONS |4] - N. Willems, S.M. Holzer, "Critical speeds
N The influence of a constant axial torque o.f rotating shaf_t sub]ec?ed"to axial loa-
- . . sgs ding and tangential torsion", A.S.M.E. J.
< on the dynamic of rotors can be significant and Eng. Ind 259-264, (1967)
is easily included in any computer program. g -» PP ’ )
- "
b3 The harmonic exciting torque, which can |5/ = R.L. Eshleman, R.A. Eubanks, "Effects of
. . : . axial torque on rotor response : an expe-
also be important in turbomachinery and recipro~ . : . P
. . rimental investigation', A.S.M.E. Paper
. cating compressors can be very dangerous. The
- . P ry : No.70-WA/DE l4.
v instability zones seem at present impossible to
., predict for a real rotor because the stiffness [6] - A. Unger, M.A. Brull, "Parametric instabi-
-, matrix would have to include periodic coeffi- lity of a rotating shaft due to pulsating
; cients. torque", A.S.M.E. J. Applied Mech., pp.948-
; 958, (1981).
i BIBLIOGRAPHY |7] - C.S. Hsu, “On the parametric excitation of
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DISCUSSION

Mr. Rieger (Stress Technology, Inc.): Has any
regearch been done on those instability bounds
to deternine the critical value of the damping
which is likely to suppress the bound
altogether?

Mr. Eshleman: No. There has not been. Some
analytical work was done by Ziegler, in
Switzerland, on the effect of daaping to show
how the bounds decrease. But, as far as
experimental work is concerned, I did some
experimental work on those bounds, and I showed
some of the bounds in it., However, I am afraid
the damping wasn’t quantified to determine what
they were.

-
2 >

®p " v NN

Mr. Rieger: It would seem that the post-
buckling behavior would be quite promising
because a shaft would deform, and 1f 1t
continued to rotate, it then would begin to
develop quite substantial damping because you
have a torque effect. The shaft, which 1s bowed
out and rotating, would have a very substantial
vector., Has anybody done any work in the post-
buckling region?

Mr. Eshleman: No. They have not.

Mr. Rieger: That is something new to think
about.,
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SENSITIVITY ANALYSIS OF THE LOCATIONS OF THE BALANCING PLANES OF AN

UNBALANCED ROTOR~BEARING SYSTEM USING DYNAMIC CONDENSATION TECHNIQUE

S. Ahuja, A. M. Sharan
Faculty of Engineering, Memorial University
St. John's, Newfoundland, Canada, AlB 3X5

An analytical procedure for the dynamic balancing of multi-rotor
systeas supported on fluid-film bearings is presented. The model 1is
developed based on the finite element method which includes the effects
of translational, and rotational inertia, and gyroscopic moments, using
the consistent matrix approach in conjunction with the dynamic astrix
reduction technique, the modal analysis, and the least-square balancing
technique. The use of the matrix reduction technique for determining
an equivalent reduced system for balancing, provides subsequent saving
of both, the computational time and space, on the digital computer.
Three distinct practical conditions are investigated in the present

work which are:

(1) The balancing of rotor disks at and below the critical speeds.
(2) The effect of the location of the balancing planes on the rotor

response.

(3) The effect of the number of balancing planes on the rotor

response.

The balancing method is found to be quite effective, permitting safe
rotor operation over the speed range covering the three critical

bending speeds.

1. INTRODUCTION

There has always been a demand for
greater power output per unit-weight in the
design of turbomachinery. This requires
higher operating speeds. The key factor in
achieving this objective is the control of
vibrations of the rotor as it goes through the
critical speeds.

The turbomachianery can be modelled as
several rotor-disks mounted on hydrodynamic
bearings. The stiffness and damping
coefficients of such bearings are speed
dependent, hence the dynaamic analysis is more
involved as compared to the systeas which are
supported on ball bearings, where these
coefficients can be considered as isotropic.
The precision modes, {n case of isotroplc
bearings, are circular, whereas, for the fluid
film bearings, it is elliptical [1].

There have been various techaniques used
in the dynamic analysis of the rotor-bearing
systems such as (a) the lumped parameter
method, (b) the transfer matrix method, and
(c) the finite element method. Ruhl (2]
analysed the rotor vibrations using the finite
element method and concluded that the results

»

are more accurate than those obtained using
the transfer matrix method. Nelson and
McVaugh (3] studied the dynamics of a
rotor-disk supported on isotropic and
orthotropic bearings using the finite element
analysis. The damping in the bearings was not
included in the results.

In rotor-balancing through the criticals,
one has to have a reasonable number of
balancing runs around each critical speed,
which is costly and time consuming. It would
be ideal if the balancing can be done at the
critical speeds only.

In the present work, a mathematical model
to control the vibration of several disks
supported on fluid-film bearings including
damping, has been developed. The response at
the various locatione on the rotor, 1is
obtained using the finite element analysis in
conjunction with the modal analysis [4]. The
size of the system matrices is reduced using
the dynamic reduction technique {5]. This
reduction technique yields sufficient accuracy
due to the lower vibrational modes. The
balancing weights are obtained using the least
square analysis (6-8]. The system in the
present work is balanced exactly at the
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critical speed, whereas, in other balancing
techniques, runs at several speeds have to be
carried out. Further, by varying the number
and location of the balancing planes, better
balancing conditions are achieved.

2. THE SYSTEM CONFIGURATION
AND THE COORDINATES

In modelling a rotor bearing system,
important consideration must be given to the
set of refereance axes utilized to describe its
motioa. A typical rotor-bearing systea is
illustrated in Fig. 1. The motion studied can
be in a rotating or a fixed frame of
reference. The rotating frame is particularly
useful, when analyzing systems with 1isotropic
bearings. 1In this case the motion in two
normal planes can be treated separately. The
fixed frame provides the generality of
handling problems with nonsymmetric bearing
stiffness, and damping effects. The only
disadvantage of the fixed frame finite element
formulation is that the order of the systea
matrices is large. This disadvantage can be
overcome by using the dynamic matrix reduction
technique.

A cross section of a rotor in its
deformed state as defined in the fixed frame
of reference system (XYZ:R), 1s shown in Fig.
1, and a typical finite rotor element is showmn
in Fig. 2. The various stiffness and the
damping coefficients of the fluid film
bearings are shown in Fig. 3. The triad is
fixed with the x axis coinciding with X. The
cross—-section of the element, located at a
distance (s) from the left end point,
translates and rotates during the general
motion of the element. The translations
V(x,t) and W(s,t) fa the Y and Z directions
respectively locate the elastic centerline,
and small angle rotations B(s,t) and I'(s,t)
respectively, represents the orientation of
the cross—sectional plane. The cross-section
also spins at a constant speed w about the X
axis defined by (x,y,z: T) triad.

3. MATHEMATICAL MODEL

3.1 The System Equation

The finite element modelled equation of
motion of a rotor-disk system can be written
as [3)

MI{a(e)} - wie] {q(e)} + (€] {aCt)} +
(k) {qa(e)} = {a(O)} )

The equation is obtained by considering
the kinetic and potentfal energles of each of
the components of this system. The details of
the derivation are given in the Appendix A.
The number of degrees of freedom in Eqn. (1)
can be quite large. In order to carry out the
modal analysis, any transformation matrix

which can be used for the matrix reduction,
must vetain the lower wodes for controlling
the vibrations through the critical speeds.

3.2 The Dynamic Matrix Reduction Technique

The reduction process is wost simply
described as a transformation, relating
coadensed degrees of freedom in terms of
retained ones. The computation of the
transformation matrix, can proceed by a number
of approaches; the most straight forward
approach is to minimize the potential energy
of the deformed structure, ignoring inertial
effects and forces on the condensed degrees of
freedom, thereby retaining the lower wmodes,
for controlling the vibrations through the
critical speeds. This is done by defining a
transformation matrix [T], and writing the
relation [5]

() qat - [};‘ﬂ]m - Tlogn (el
(2)
vhere,
(= b= -z m g
[Kqgl (Kps]
3)
The submatrices [Kss] and [Kus] are

obtained by partitioning the stiffness matrix
(K] in Eqn. (1) which can be writtea as

L i (Kygl
[Klpxn = i I el
[Kyg)™ | [Kgq)

4)
In Equs. (2) to (4) 'm' refers to the number
of master degrees of freedom, and 's' to the
slaves. The master degrees of freedom are
retained, whereas the slaves are removed.

Using this transformation matrix, the
condenged wmatrix equation can be written as

tmm{;_m} - 6[65) mrnl 9t ax1

+ (Colaxa {im(t)}uxl + (Knl-xm{qm(t)}nxl
= {Q(®) g1 (5)

wvhere, the condensed matrices are given by

Myl = [T1T (M) eq [T1,

(Kalnxa = [T1T (K] gnlT1, Q)
(Cnlaxm = [T)T16] pn (], (®)
(Calumn = [T1TIC] 1xn!TI, 9
and {0t by = [T1Qlggy + (10
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The eigenvalues of the condensed systea
as represented by Eqn. (5) are higher than
that of the original system because of the
imposed constraints. The selectiom of the
master and slave degrees of freedom is
automated so as to ensure that the lower modes
are vetained as the masters. The diagional
coefficients of [K] and [M) are scanned, and
the degree of freedom 1 for which Ktil My, 1s

the smallest, 1s selected as the first master,
and the rows and columns of the system
matrices are rearranged accordingly. This is
repeated, till the system matrices are
arranged in an ascending manner, based on the
Kyy/Myy ratio of the diagfonal elements.

3.3 The Modal Response Analysis

The modal analysis [4]) of the condensed
system can then be carried out, after
rearranging Eqn. (5), into a systea of first
order differential equatfion of the foram

M (x(0)} + (X1 [x(0)} = [F},

(1)
where,
i ' (]
. [ at '(-«T»IE.J‘WC'!Y] a
()

w - - @

{¥} = [}gi} (14)

X {aa(t) a [{q )H
{x(e)} [{q_<c)ﬂ , and {X(t)} = [ (O

(15)

The damped natural frequencles of the systea
are then obtained, by finding the eigenvalues
of the dynamical matrix [D] which is given by

(o} = 7! ) (16)

The transformation of Eqn. (11) is carried
out by using the relation

[x(t)} = (0] {n(D)} arn

where [¢] contains the eigenvectors of the
reduced systea represented by Eqn. (11).
Introducing Eqn. (17) iato Eqn. (11) and

premultiplying the result by [¢")T, which is
the transpose of the eigeanvectors of the
transposed system, leads to the following:

39

(' 1T} + (0*1TIRICo1 ()}~
1e*17(r} (18)

representing the dynamics of the systea in the
normal coordinstes. Because of nonsymmetric
nature of the stiffness and damping matrices,
a conventional normal mode analysis is not
possible, where [¢]T 1s used instead of [¢*]T.
Eqn. (18) can be rewritten as

(u*] {n(e)} + (x*] {n(O)} = {o} a9

vwhere [u.] and [x'] are diagional matrices
respectively. The steady state solutioa for
Eqn. (19) can be written as (4]

n,(£) = N exp(jut) + N, exp(-fut) (20)

and

ui(t) - !1 exp(jut) + !t exp(~jot)

11,2, 0000, 2u (21)

Substitution of Eqn. (20) and (21) ifato Eqn.
(19) leads to

(-<1 + Juui) N1 exp(jut)
+ (ri-anzﬁi exp(-juwt)
- Bi exp(jut) + ii exp{-jut) (22)

Equating coefficients of exp(jut) and
exp(-juwt) respectively, one can write

B‘ nd ;
R T T .(___zx{__y
1 ‘1 mul i Kl Wy

i

(23)

where !‘ and E,; represent the forces due to
mass unbalance in the normal coordinates.

Eqn. (19) can be solved on a mode-by-mode
basis and Eqn. (17) can be used to obtatn {X}.
The nodal displacements, which represent the
elements of the vector lq }, are obtained
using Eqn. (15) by taklng the real part of the
lower submatrix of the vector {X]. The
displacement vector {q} s obtained uping
Bqn. (2).

3.4 The Least-Square Balancing

The magnitude of the elements of the
vector thus obtained, is reduced using the
least square method {6-8]. As the first step,
the rotor is run at its first critical speed
without making any changes to it. Next, a
known trial weight is placed in each of the
balancing planes, and the resulting vibration
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calculated at each of the msasuring planes.
By subtracting from these results, the
corresponding results for the uncorrected
rotor, and dividing the difference by the
value of the trial weight, a series of
influence coefficients are obtained one for
each measuring plane. This is mathematically
writen as

R, - R

3

where a is the complex influence coefficient,
T the trial weight, "13 and Ry, the elements

of the response vector {R}, and 1, j represent
the measuring and balancing plane numbers
respectively. Once all the influence
coefficients are evaluated, the correction
weights required to minimize the unbalance
vibrations of the rotor can be computed by
using the relation [6]

{R Jgx1 = [Algep {Uhpmy (25)

where [A] is the influence matrix coefficieat
vhoge elements are Qg {u} 1s & complex

vector defining the correction weights and the
subgcripts q and p represent the available
nunber of measuring and balancing planes
respectively.

In exact point method (7], the number of
balancing planes are equal to the number of
measuring planes i.e. p=q. The least-square
method although based on the same principles,
permits the condition where the number of
measuring planes can exceed the number of
balancing planes. This allows an increase in
the input data (more measuring planes than
balancing planes), whereby the consequence of
a single error in the data tend to decrease.
The analytical procedure for the least-square
method is given in [8].

In general case, where the number of
measuring planes exceed the nuaber of
balancing planes, the unbalance is reduced by
minimizing the square of the residual
smplitudes. The expression for the correction
weights vector {U] in this case, can be
written as

{v} = -7 (AD7Y L AIT . {Rg)  (26)

The final equation yields that particular
combination of correction weights which
ainiaizes the residual vibrations of the rotor
in the least-square sense.

3.5 The Sensitivity Analysis

To provide further flexibility im rotor
balancing, the effect of varying the location
of the balancing planes within an element, 1is
incorporated in the system. For a typical
unifora element shown in Fig. 4, the variable
balance plane is located at distance (a) along
the axis of the element, the end planes of the

element are shown as b; and b, respectively.
The displacement shape functions are given by

vwe1-3Pp? 2Pl (27)
v =t - 2P + P, (28)
vy = 3pl-2p3,  am (29)
v = t-p% + P1, (30)

The forces due to the addition of the trial
weight in a plane are given by

2

P~ (apu’ sin 6)cos wt + (-apu’ cos 6)
sin ot (31)
F,~ (apw? cos 6) cos wt
+ (mpw? sin 8) sin wt (32)

Referring to Fig. 2, the forces at a joint of
a given element, due to a trial weight located
at a distance (&) can be obtained by combining
EBqns. (31) and (32). The expression for these
(joint) forces can be written as

| 3
L - f [(lcmz sin @) §(s-a) ¥ cos wt
°

+ (lpm2 cos 0) &(s-a) ¥y sin wt]ds
i=1,2,3,4 (33)

These forces at the joints of the elements are
asgembled into the global force vector for the
dynaaic respongse calculations.

4. THE NUMERICAL EXAMPLE

To demonstrate the application of the
finite element model, a typical rotor bearing
system with six elements as illustrated in
Fig. 5, is analyzed. The details of the
rotor are provided in Table 1. It coasists of
a shaft, with a untfora diameter of 0.050 m,
and an overall length of 0.76 m. The rotor is
symmetrical with most of its mass concentrated
in the two disks. A density of 7806 kg/au3 and
elastic modulus of 2.078 x 10! N/a? are used
to model the rotor shaft. The two disks, with
a mass of 20.45 kg, polar moment of inertia of
0.0020 kg-u? and diametrial inertia of 0.0010
kg-m? are located 0.254 m in from the ends.
The rotor was supported on plain cylindrical
fluid-film bearing with a L/D ratio of 1 and a
bearing clearance of 0.000635 m. The
unbalance condition was represented by the two
disks with an in-line, in-phase mass centre
ecceatricity of 0.000635 m. This
configuration is common to impellers keyed to
the shaft with the same key. The stiffness
and the damping coefficlents of the bearings,
which are speed dependent, were obtained from
[1] where these values are given in a
graphical form.
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5. THE RESULTS AND DISCUSSIONS

5.1 The Dynamic Matrix Reduction Technique

In the dynamic reduction technique, the
original system matrices were reduced to
smaller sizes by using a transformation matrix
obtained by using Eqn. (3). 1In this reduction
process, care was taken that the properties of
the original systea, such as the natural
frequencies, did not alter significantly. The
greater is the degree of reduction, more is
the deviation of properties such aa the
natural frequencies.

For the present system, the number of
degrees of freedom were 28. This had to be
reduced as much as possible. Trial runs on the
computer for the calculatioan of the natural
frequencies using Eqn. (16), were made by
varying the degrees of freedom between 12 to
25. Sowe of the results obtained are shown in
Table 2. In this table, the first five
natural frequencies were computed by varying
the number of master degrees of freedom. As
the number of master degrees were increased,
the natural frequencies decreased. However,
this rate of decrease in the frequency value
with respect to the increase in the degree of
freedom, became very small when the degrees of
freedom were 16. Therefore, the reduced
system, for further analysis, was chosen to
have 16 degrees of freedom, which represents
42 percent reduction in the each of the system
matrix sizes.

5.2 The Variations of the Natural Frequencies

of the System with the Operating Speed

The first three damped natural
frequencies of the systeam are given in Pig. 6.
The critical speeds are frequencies when the
systea natural frequencies are equal to the
operating speed. The abrupt changes in the
frequency map are because of the speed
dependent fluid-film bearing coefficients.

The rotor, light in weight, has a Sommerfeld
number ranging betwwen 1.0 to 10.0, within the
operating speed range. The response at the
first three critical speeds for the original
and reduced system are shown in Table 3. The
location of the measuring planes are shown in
Fig. 7. A maximum deviation of 1.05 percent
as given in this table indicates the
effectiveness of the matrix reduction
technique.

5.3 The Effect of Gyroscopic Moment on the
Rotor Response

To study the effect of gyroscopic moments
on the rotor-bearing response, the unbalance
damped response values for the three critical
speeds were calculated. The response values
obtained are shown in Table 4. As can be seen
from this table, the gyroscopic moments have
very little effect on the overall response of
the system. This {s due to the damping in the
systen, which tends to mask the gyroscopic

EL Bo-f N A A SO/ S S Sy i P,

effects of the shaft and the two disks.
Although the gyroscopic effects were small for
this system, they were {ncluded f{n the oversll
systean analysis.

5.4 The Dynamic Response as s Function of
Rotor Speed

The unbalance response at the middle of
the rotor, for various operating speeds, is
shown in Pig. 8. The three critical speeds
are clearly indicated by the peaks in the
curve. The response is very high at the first
critical whereas it is almost equal at the
second and the third critical speeds.

It is obvious from this study that the
vibration levels at the criticals must be
controlled. The maximum whirl amplitude at
the measuring planes, at various criticals,
are shown in Table 3. 1t can be clearly seen
that 16 master degrees of freedom are
sufficlent for the dynamic response study
because the deviations from the original
systes are very small. In addition, the
deflections are symmetrical along the rotor as
shown in Fig. 9. This is because the
measuriag planq, {refer to Pig. 7) have been
located in a symmetrical manner, and the
deflection of the corresponding points on
either ends, ave equal. For example, the
measuring plane numbers 2, and 6 are
equi-distant from the ends and their
respective response values are equal.

5.5 The Dynamic Balancing of the
Rotor~Bearing System

The dynamic balancing can be carried out
by selecting equal number of measuring and
balancing planes. For rotors, which are
symmetrically located, it often leads to large
correction weights at the middle {6]. On the
other hand, one can use the least-square
method, where the rotor amplitude response,
can be minimized without adding excessive
weights, and where the number of measuring
planes can be greater than the number of
balancing planes. Another advantage of this
method 1s that there can be several measuring
planes and even if there is some error in the
measurement in one or wore than one plane,
still the computed values yleld very good
results. In other words, by increasing
the number of the measuring planes, the
influence of a meagsurement ervor in any one of
these planes, is diminished. The greater the
number of balancing planes, the better will be
the balancing of the system. Unfortunately,
due to the limitations of the accessibility
and other constraints, the balancing planes
can not be fncreased beyond certain number,
for a given system. However, in these
situations, the best one can do is to ifacrease
the nuaber of measuring planes and carry out
the balancing using the least-square
analysis.

The rotor was then balanced at the first
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.eritical speed using three fixed balancing

planes as shown in Fig. 10. In order to
present a meaningful coamparison of the balance
improvement as & result of balancing at the
critical speeds, two balancing methods were
considered.

Method 1 1involves a commercially used
balancing technique [6]). Im it, the rotor is
first balanced at little above half its first
critical speed to stabilize the higher modes,
and then balanced at 1190 rpm., a speed close
to the first critical without actually
balancing the rotor at its critical speed.

Method 2 involves balancing the rotor at
its critical speed only. The results for the
two methods, are presented in Table 5. 1In
method 1, the unbalance response at various
measuring planes was calculated using Eqn. (5)
and is shown in coluan 3. The response at
various speeds after balancing at 760 rpm, is
shown in column 4. Similarly, the respoase at
various speeds after balancing at 1190 rpm, is
shown in column 6. The percentage
improvements, due to the first and the second
balancing are shown in columns 5 and 7
respectively. Referring to this table, it can
be easily seen that the major reduction in the
response is carrled out by the first balanciang
at 760 rpm. The second balancing is more
effective at higher speeds such as 1190 or
1253 rpan (percentage reduction in response is
higher).

In method 2, the balancing is done
only at the critical speed and the results
after this balancing, are shown in coluan 8.
The percentage reduction due to this balancing
is the percent difference of the results given
in columns 3 and 8 respectively.

The results obtained either by
method 1 or 2 are quite good, but method 2
yields better results. The balance results,
along the length of the rotor, are shown in
Pig. 11. As stated earlier, the deflections
are symametrical. The curve obtained using
method 2, shows a slight dip at the middle of
the rotor. This is due to the presence of the
balancing plane at this location.

After balancing the rotor for the
first critical speed, method 2 was selected
for further balancing. The rotor response at
the second and third critical speeds were
obtained and the corresponding correction
weights were calculated. The gystem unbalance
and balance response values at the three
criticals are given in Table 6. The magnitude
of the correction weights and their phase
angles at these criticals, are given in
Table 7.

The maximum reduction in the unbalaace
response is attained under the first balance
run. The effect of the second critical
balance results in an increase in the overall
balance condition. The increase is probably
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because the balance plane locations are
not properly spaced. Similar results are
reported by Tessarzik [6].

Next, the rotor response at the third
critical speed with the first set of
correction weights, was calculated and the
corresponding correction weights at this
critical speed, were determined. The response
values, with the first and the third sets of
correction weights, are shown in column 8.
The results in column 9, indicate that the
response, after the first and the third
critical balancing, decreases at most of the
locations except at and near the bearings.
This is possibly due to the balancing planes
locations which are away from the bearings.
The dynamic respouse along the length of the
rotor due to these balancing are shown in Fig.
9 to 11. Referring to Fig. 9, there 1is quite
significant reduction in the unbalance
responge due to the correction weights. The
deflection curve along the rotor, is
symmetrical even after the balancing, in all
of these three figures. This is because the
balancing planes have been symmetrically
located along the length of the rotor.
However, the percentage decrease in the rotor
response, after the balancing at the second
and the third critical, f{s much less than that
at the first criti{cal. For example, at a
distance of 0.15 m along the rotor, the
difference in the unbalance and balance
response in Fig. 12, is much more than a
similar difference in Figs. 13 and 14.

Referring to the Table 7, the angular
location of the correction weights 1is
approximately opposite to the disk mass centre
eccentricity, which 1s 45°.

It must be added here that the overall
saving of CPU time for a balancing run was 38
percent.

5.6 The Effect of the Location of the
Balancing Planes on the Rotor Response

In the previous section, three balancing
planes were used; one located at the middle
and the other two symmetrically located away
from the first one. Since the rotor disks are
symmetrically located on the rotor shaft, it
appears logical to place these two balancing
planes also symmetrically. Therefore, in
order to study the effect of the location of
these planes on the response of the systenm,
the locations of the two outer planes and the
location of the third plane, have been chosen
as variables for the paraametric study.

The effect of balancing plane location,
for reducing the system response, is studied
using three balancing planes, as shown in Fig.
15, where a; and a, represent the location of
the two outer and inner planes, respectively.

At first, 8, wvas varied with a, fixed
corresponding to the middle of the rotor. The
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resulting response values are shown in Table 7
and correction weights in Table 8. It is
evident from Table 9 that as the balancing
planes are moved towards the disks, the
residual response value decrease. This is
because of the flexibility in the rotor shaft,
the greater is the spacing between the
unbalance forces at the disk and the
correcting forces in the balancing planes, the
less is the effectiveness of the correcting
forces in reducing the response. Table 9
shows that as these measuring planes are moved
in towards the disk, the magnitude of the
correction weights in these planes alao
increage. When these two planes are located
close to the disks, most of the correction
weights are needed in these variable balancing
planes; the weight in the fixed balancing
plane 13 negligibly swall.

Tables 10 and 11 show the effect of
varying the center balancing plane while
keeping the other two fixed. It can be seen
in these tables, that as the center balancing
plane is moved, both the response as well as
the magnitude of the correction weights,
increase. In addition, the maximum deflection
curve along the length of the rotor, is no
longer symmetrical. The best balance
condition, using the locations of the
measuring planes (a,, a,) as the variable
parameters, is achieved when a; = 0.228 n and
a, = 0.381 m. Fig. 13 shows the unbalance
R regponse along the rotor; the balance response

with a; = 0.127 m, a, = 0.381 m; the best
balance response after the paraametric
varfation, with a; = 0.228 m, and a, = 0.381
' m. It clearly shows that significant benefits
! can be realized by this parametric variation
study as shown in Fig. 16.

aura oy s a4

s 5.7 The Effect of the Number of Balancing
Planes on the Rotor Response

In carrying out balancing using the
least-square method, an important
consideration is the ratio of the nuaber of
measuring planes to the balancing planes. In
the previous section this ratfo used was 7 to
. 3. The effect of the variation of this ratio
- on the response, has been studied in this
section. The number of the balancing planes
have been varied between 3 and 7 while keeping
the number of the measuring planes equal to 7.
The various plane configurations are shown in
Fig. 17. The rotor response, as a regult of
these variations, are shown in Table 12 and
the corresponding correction weights in Table

13.
¢
& Fig. 17 shows that when the total number
. of balancing planes are 5, or 7, there is a
" balancing plane on the either side of a disk
- at equal distance besides a plane at the
. middle. The results f{n Table 12 ghow that the
odd number of balancing planes yield better
- results than the even number of these planes.
" Among the odd numdber of planes, the best
} results are obtained when the number of
o
S
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balancing planes are equal to 5. The results
shown in Table 13 indicate that for odd number
of balancing planes, the correction weight in
the middle balancing plane, is very small.
This indicates that the forces generated due
to the correction weights located near the
disks, are mainly responsible for the balance
condition. It was also reported by Tessarzik
(6] that increasing the number of balancing
planes does not necessarily lead to better
balance results.

CONCLUSIONS

The finite elewent approach provides a
convenient and accurate means of balancing a
multi-rotor system, supported on fluid-film
bearings. The use of matrix reduction
technique in calculation of the reduced set of
system matrices, enabled subsequent saving in
computational memory storage of 42 percent,
and that of computational time for a balancing
run of almost 38 percent. Besides, in the
reduction process, the retained degrees were
the translational degree of freedom, therefore
one could work with the reduced system only.
There was no necessity of recovering all the
degrees of freedom where the rotational
degrees were also included. The modal
analysis gives an effective means of
determining the unbalance force response, and
the relevant mode informatfon. The use of
least-square method, for the case
investigated, provided good results, whereby
balancing at the first critical speed was
sufficient to bring the rotor amplitude down
over the other critical speeds also. Further,
by varying the number and location of
balancing planes, better balance conditions
were achieved. The results revealed that when
using the least-square method, the odd number
of balancing planes yield better results than
even number of balancing planes.
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APPENDIX A

The Component Equations of a Rotor-Bearing
System

The rotor bearing system is comprised of
a set of interconnecting components,
consisting of uniform rotor segments with
rigid disks, and fluid film bearings.

The shaft portion of the rotor is
modelled as beam elements, by specifying
spatial shape functions, and then treating the
rotor element as an integration of a infinfite
set of differential disks. A typical rotor
element 1s shown in Fig. 2. The
cross-sectional displacements within the
element are defined relative to a fixed frame
of reference I, by translations V(s,t) and
W(s,t) and rotations B(s,t) and I'(s,t). The
finite rotor element coordinates are indicated
by eight degrees of freedom (qle, qze,....,
ag®), four at each end, with two for
translation, and two for rotatfon.

The rigid disks representing the
impellers, coupling, flywheels, are
convieniently described by a single plane,
with only four degrees of freedom, two for the
translation and two for the rotation.

The equation of motion for the elements
are derived, by writing the expressions for
the kinetic and the potential energies, of the
components. The kinetic energy consists of
both translational and rotational modes. The
rotation terms also include gyroscopic effects

agsociated with the spining of the shaft. The
potential energy consists of the elastic
bending effects of the shaft. The formulation
{s based on the Timoshenko beam theory [9].
The expressions for the matrix equation of
motion using the Lagrange's foramulation for
the rotors as well as the disks are [3]:

Finite Rotor Element Equations

(M1 + M%) {a®) - i8] {a®) + [%g®)
{a°} = {e®} (A.1)
Rigid Disk Equation

(g3 + 0D {a%) - 0 16%) {q9} =
{4}, (A.2)
Bearing Equation

The dynamic equation of wotion of the
bearings, in the fixed frame coordinates as
shown in Fig. 3, can be written as

1c®) {q®} + [kP) {q®} = {Q®} (A.3)
in fixed frame coordinates, where

(" = [¥].
b b
b Kyyv' Kyw
(x°] = b NE
Yev  Kw
b
b, [Cw Cw
[C°] = b ol
Cwv  Cww
In Eqa. (A.3), {Qb} repregents the
external force vector applied on the bearings.
The elements of the stiffness and the damping
coefficient matrix are coansidered to be
nonlinear. These matrices contain
cross—coupling terms representing a
nonisotropic bearing with the principle

coupled axes oriented at (45°, -45°) to the
normal z-axis.

aatrix

differentiation with respect to
position

differentiation with respect of time
fixed reference frame (XYZ)

rotating reference frame (xyz)

snall angle rotations about (Y, Z)

trial weight addition angle
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n(s) z(s)

L
{a}
{acHagl

(¢l
(1

J-th complex eigenvector of the
original systea

j-th complex ei

J-th modal displacement
generalized force vector
generalized mass matrix
generalized stiffness matrix
matrix of translation displacement
functions;

’1('); 1=1,2,3,4

matrix of rotation displacement
function:

v le), 1=1,2,3,4,
speed of rotation of shaft

location of disk mass centre
relative to T

distributed location of element
cross section mass centre
relative to T

complex influence coefficient
element mass per unit length
element length

displacement vector relative to M

unbalance response assoclated with
cos Qit, sin Qtl

axial position along an element
time

matrix of complex influence
coefficient

conjugate of the complex tnfluence
coefficient matrix

system damping matrix
dynamical matrix

forward component of the j-th modal
force

backward component of the j-th modal
vector

overall exciting force vector
system gyroscopic matrix

i{dentify matrix

-

Ip, I elemental diametral and polar
p inertia per unit length

{K] system stiffness matrix

[M] system mass matrix

P potential eanergy!

{Qc}'{qs} unbalance force assocfated with
cos firt, 8

R, Ry major and minor diameters of the
elliptical response orbital

S, Sommerfeld nuaber

T trial weight

T kinetic energy!

[T) reduction transformation matrix

{v} a complex vector defining the
correction weights

U a_complex conjugate of the
elements of vector u.

(v, W) translations ia (Y,2)

{x} overall displacement vector

My» ID, Ip disk mass, diametral inertia,

and polar fertia

), 164

disk mass, gyroscopic, matricesl

[He].[Ge],[Kel elemental mass, gyroscopic,
stiffaess matricesl.
[Cb], [Kb] bearing damping and stiffness

aatrices
vab, Cv"b, C“vb, cHHb elements of [cP]
vab. Kv"b. ngb. K“"b elements of [Kb]

TABLE 1 ROTOR DETAILS

Shaft Diameter

Total length of Shaft
Modulus of Elasticity of Shaft| 2.07x10!! Pa.
Shaft Deneity
Disk Weight

Type of Bearing
Besring L/D Ratio
Viscosity of ofl
Disk Becentricity

0.05 e
0.76 m

7.68x10" kg/a’
20.43 kg.

Plain Cylindrical
1

69x10-*N sec/a?
6.35210"%  (In~plane 45°)

1 Where appropriate the superscripts d, e, b,
8 refer to disk, element, and bearing
respectively, and subscripts T, R, B refer
to translational, rotatfonal, and bending
respectively.
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N TABE 2 COMPARISION OF TWE DANPED MATURAL or A ™R
L)
I~ Aetained Dagree of Fraedom
! Frequeacy] Origlnal -
[ [la. Systea “erceat Percent Percent Parcent Percent Percent
! 12 Deviatl 13 Devistion 18 Deviation 1 Deviation 16 Deviation 2% Deviation
cm oM 2 cm 1 cm k4 < 3 cm 2 cm 1
1 1200.417 1268.00% 2.5 1202.845 0.4 1292.04% 1.2 1260.417 2.1 12%.1%) o0.m 1256, 114 0.0
* H 3932.476] INS.6%] 2.8 3.N0] 11D 390|218 3532.4761 10.2 1236.182 0.9 L 32%.12) n.0
: 3 4976.43% $142.606 1.4 $008. 300 2.6 5008. 300 0.3 4976.434 3.2 496%.77% n.n H 4965.902 n.n
4 4N02.38 %M. 7e 0.3 94900.05 0.0 94900.0% 0. 4802.36 0.1 94 780.9} 0.2 96564 .40 1 n.n
.-‘ t'-\ 1227354.28 |1Y5411.9% .4 135592.7% 0.1 195992.7% 1.9 122354.28 9.6 122362.5 0.5 lIMI!.hSl 0.
.
\
Al
N
“
N TABLE 3 COMPARISON OF TME MAXIMUM RESPONSE AMPLITUDES
BETVEEN THE PULL AND REDUCED SYSTEMS TABLE & COMPARISON OF UNSALANCE RESPONSE POR CASES VITM
\ AND WITBOUT GYROSCOPIC EPPECTS
. Rotor  |Measuring Maxtmum Rotor Response Rotor |Measuring [Maximus Response Amplitude(Percent
. Speed P lane 4= Speed Plane Deviation
- [ ] No. Full Systea[16 Degrees Systew/Percent . No. with Without T
- - Deviation [Cyroscopic ({Gyroscoptc
X Effect Effect
» a
" 1 7178 x10°%]  7.170 x 10~ | o.48
. . . 1 7.170 x 10°5]7.176 x 10~5 | 0.09
y 2 2.979 x107%| 2.964 x 10™* 0.5 The
The x 6 Pirst 2 [2.96 x107%{2.966 x 10°* | 0.06
Firet 3 6.186 x 10™" L7746 x 107 . Criticel
Ceitical 18 x 1 ¢ x 0.63 azs3.63)| 3 6.77% x 10-*|6.783 x 10~* | 0.13
. 7. . . - .
: (1253.63) 4 769 x 10" 7.726 x 10 0.63 . 7.724 x 10-{7.730 = 10-* { 0.08
-y -
s 6.814 x 10 6.776 x 10° 0.63 s 6.77% x 10-*|6.783 x 1074 [ 013
L] -4
6 2.979 x 10" 2.964 x 10 0.56 o 2.964 x 10-|2.966 = 10* | 0.06
p -5 -9
. L i 7.170 x 10 0.48 7 7.170 x 10-5|7.176 x 10-% | 0.09
-6 -6
1 ]2.300 x 10 2.370 x 10 0.40 1 2.370 2 1072376 2 1076 | 0.17
-5 -5
The 2 3.655 x 10 3.644 x 10 0.29 The 2 3.644 x 10-5[3.619 = 10~5 |-0.68
ericieal 3 Js.a22 x107%  s.169 x 1078 Second
‘é:a;;f;” 172 x 169 x 1 0.05 Crittcal ] 6.169 x 10-5[6.138 x 10~ {-0.50
X . . " 4882,
4 7.137 x10°%]  7.089 x10"% 0.71 ¢ 3 . 7.089 x 10-5{7.063 x 10-5 |-0.37
. s 6.172 2 16"%|  6.169 x 10™5 0.03 s 6.169 x 10-5(6.138 x 10~5 {-0.50
.
6 3,635 x10°5| 3.644 x 10-3 0.29 6 3.644 x 105[3.619 x 10-5 |-0.68
2.380 x 10~ 2.370 x 10~ 0.40 7 2.370 x 10°8]2.374 x 10~¢ |-0.17
) 1 1.5% 210"%| 1.586 x 10-© 0.52 1 1.586 x 10°61.5% =z 107¢ | 0.23
2 3.490 x10"3%]  3.469 x10°° 0.61 The 2 3.469 x 1075{3.434 x 10°5 |-0.43
The s Thire
N Third 3 5.928 2107 5.877 x107% 0.87 Crittcal 3 5.877 x 10-5(5.872 = 105 |-0.08
' Critica) (8357.83)
(8357.83) 4 6.847 x10°3] 6.776 x10-% 1.08 [ 6.776 x 10-3}6.774 x 10~ |-0.03
* s 5.928 x 10-%] 5.877 x 10-5 0.87 [ $.887 x 10-%{5.872 x 10~ |-0.08
) 3.490 x10°%|  3.469 x 10-% 0.61 . 3.469 x 10-5]3.434 x 10-5 |-0.43
7 1.596 = 107%] 1.586 x10"% | 0.%2 7 1.566 x 10°¢(1.590 = 10~% | 0.25
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DISCUSSION g
L4

g Mr. Leon (Liberty Technology Center, Inc.): In
your studies, did you alter the unbalanced
distribution of the rotors and repeat your

4
study? 3
H Mr. Sharan: No. I did not do that for that b
A type of distribution. r*
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SYSTEM IDENTIFICATION

STRUCTURAL DAMAGE DETECTION
8Y THE SYSTEM IDENTIFICATION TECHNIQUE

J. C. S. Yang, T. Tsai, V. Pavlin, J. Chen, W. H. Tsai
University of Maryland
College Park, Maryland

Over an extended period of time, exposure to severe loading
very often results in fracture or crack damage of structures
which can ultimately lead to fatigue failure, The research
described in this paper, concerns the development of tech-
niques with the potential to detect and track progressive
fracture by observing changes in the identified system pa-
rameters: mass, stiffness and damping matrix elements.

The method, called the system identification technique, has
two steps: a process of retrieving the eigenvalues and eigen-
vectors during a dynamic response phase and the determination
of mass, stiffness and damping matrices from these values.
The proposed technique was verified on cantilever beam con-
tinuous structure systems through finite element simulation
and experimental studies. Results from both studies have
indicated the feasibility of damage detection by identifying
the structural system matrices., For a cantilever beam systemW
the location of crack type damage seems to be best identified
by the flexibility matrix which is the inverse of the stiff-

ness matrix.

1. INTRODUCTION

Many ships and offshore structures have a
predicted design life which is generally based
on conservative design criteria to compensate
for uncertainties in the load environment and
associated damage effects. Severe loading over
an extended period of time, may lead to fatigue
failures of exposed structures. Initiation and
propagation of cracks change the structural re-
sponse of the system which manifests in a
change in the dynamic equations of motion.
Therefore, the System Identification Technique,
from which the dynamic equations of motion may
be deduced from experimental data, offers the
potential of being able to detect cracks, flaws
and other features by observing changes of
structural parameters such as mass, stiffness
and damping elements of matrices.

The identification and modeling of multi-
degree of freedom dynamic systems through the
use of experimental approaches, is a problem of
considerable importance in the area of system
dynamics, automatic controis and structural
analysis. Indication of the wide range of ap-
plicability of this subject is shown in the
1iterature related to system parameters iden-
tification efforts (Refs. 1-11),

Purely mathematical mode) representation

57

of the real problem may prove to be a very pow-
erful tool for the analysis and design of com-
plex structural systems. The mathematical
model representation could, of course, be de-
vised from a theoretical understanding of the
system and its components, or from a finite
element model in the case of purely structural
systems. These techniques are inferior com-
pared to one which is based on an actual exper-
imental response approach. Furthermore, when
the system becomes more complex and sophisti-
cated, it becomes more difficult to understand
its mechanisms, and, therefore, to develop an
appropriate theoretical model, which will give
a good prediction of its dynamical response.

For these reasons, the objective of this
research is to develop a new and more accurate
dynamic system identification technique for de-
termination of dynamic equations of motion,
from dynamic response data, of a system with
high modal density. This project seeks to dem-
onstrate that it is feasible to detect damage
in structures due to existing cracks or flaws
by observing the changes of structural param-
eters as elements of mass [M], stiffness [K] and
damping [C] matrices, and also to observe
changes in the power spectral density and res-
onant frequencies.

The ultimate objective of the subsequent

¥ sy

RO AN

A AL

R f‘i’qr"' .

sve

RGN N

" f f.f._

)

,




research is to correlate the cracks, flaw sizes
and their location with the obtained changes in
system parameters.

2. MATHEMATICAL MODEL OF THE SYSTEM
IDENTIFICATION TECHNIQUE

Let us begin by considering a structural
system which can generally be represented by an
N degree-of-freedom 1inear system. The dynam-
ics of the system are governed by its equation
of motion: :

[M] [X] + [c] (XD + [K] [X] = [f] )

where [X], [X], [X] are the displacement, ve-
locity, and acceleration column vectors of de-
gree N, respectively. Force [f] is also an
N-column vector. The [M], [K], and [C] are N
x N mass, stiffness, and damping matrices, re-
spectively.

The system identification technique in-
volves the identification of [M], [k], and [C]
matrices of the system, from the known re-
sponses [X], [X], [X] and the known forcing
function [f].

Adding to equation (1) a trivial differen-
tial equation:

M) [X]-[M)[X]=0 (2)

a set of equations which describe the motion of
the same structural system are obtained:

o] M) 1%| , FIMY Lo [X] = fo (3)
[MI1Cc]) | X GBI f

or in the condensed form:
0] {ql + (€] (q] = (Q]

where the matrices are defined as:
fol =[{§]+{%]]
LJHTY 3
(€] u"'Ll‘[o] [Kll (4)

e i o B

After performing the Laplace transformation, we
obtain:

8 (s)] [q (s)] = [q (s)] (5)
where

(8 (s)] - [[D]s + m]

is the system matrix. It can be proved that
[0] and [E], which wuntain the system's [M],
{c], [k] matrices, can be represented by the
eigenvalues P, and eigenvectors [Yk], produced
from the system matrix and determined by the

fe e S .\:h":.\-.\:"-}\‘.\. A A N
A Te N . '.-.'1.‘\;\\' N AT Y
-t A -

o .f\-yh:-' y .}.:.‘\).\v':-'\\ .

homogeneous equation (Ref. 12):
e (p)l V=0 (6)

When [M], [K], and [C] are symmetric, the fol-
lowing expressions can be proved:

(0] = (v37'T(n) (1! =
te = 177 -P1 117!
where

Y= [.Y]- yz: .Y3. ==y yN]
is an eigenvector matrix while the eigenvalues
matrix is:
Pyolo
o pylo
i
o oip,

It can be shown that the system's transfer
function could be represented as a function of
eigenvalues and eigenvectors, that is:

H(s)1= [¥I0s-p1 " [v1T-1 [yuﬂ, ok
k=1] s-p s-pf

(8)
or
2n
[H(s)) =z [ak] (9)
k=1 s-py
where

P, = kth root of {det (B(s)) = o}
[ak]= residue matrix for the kth root

In general, the ij-th element of the residue
matrix [ak] is written as:

a.ij(k)=yikyik (10)

which provides the connection between residues
and eigenvectors.

The transfer function H(s) is experimentally
measurable. Using various curve-fitting proce-
dures (Refs. 13-16), the eigenvalue and eigen-
vectors can be retrieved from the transfer
function as indicated by Equations (9) and (10).

The proposed technique has been verified on a
two-degree of freedom system simulated by analog
computer circuits (Ref. 17). The results indi-
cated that the system identification could ac-
curately determine the mass, stiffness and
damping matrices of a lumped spring-mass-dashpot
system whose degree of freedom is Tow. The work
described below includes the continuing verifi-
cation of the stated technique on continuous
structural systems. The physical system con-
sidered was a cantilever beam. The verification
was conducted in two ways: NASTRAN finite ele-
ment simulation and experimental measurement.

58

AU
LN AN

o

0 3 PN, g gy » P R

r r e
. .

Y¥r

» ®

B

8 A

Ayt e S 'f{" e

g

AT

i
b’ .

e Fo-fe "o e
T .
ORI A AT R

We o a, 5, ¥ 2=

....p..

RA NI ORE
L

| LA N ) l..'l

AN
¢

4
vy l'.lr_‘

. s
"‘l {c;

o




et e e A3

PP )

[}

P R R

LT

»

v ara, o
PRI

N
e

3. NUMERICAL APPROACH IN DETECTION OF DAMAGE
OF A CANTILEVER BEAM

In the measurement of real structure re-
sponse signals, error often exists. Such error
can greatly affect the accuracy of the identi-
fied system matrices, especially when the
degree of freedom of the structural system is
high. At the initial stage of development of
the system identification technique, it is
desirable to generate structural signals as
close to theoretical values as possible to be
used as verification of the technique. Numer-
ical approach was adopted in which a cantilever
beam was modeled with the NASTRAN computer pro-
gram to generate the numerical vibration sig-
nals.

The mesh configuration of the finite ele-
ment model of the beam is shown in Fig. 1. The
dimension of the beam is 1" wide, 12" long, and
1/8" thick. The model is composed of 200
CQUAD4 bending elements of MSC/NASTRAN version
of the finite element method. The material of
the beam is mild steel whose properties are:

Young's Modulus E = 3.0 x 107 lb/in2
Poisson Ratio v = 0,33
7.557 x 107* slug/in’

Mass Density p

Six stations were chosen from which the
frequency response functions were taken. These
are labeled stations 1 through 6, located along
the beam center line and separated 2 inches
apart (Fig. 1). Dynamic forces were applied at
station 2. Transfer functions at the six sta-
tions, which are defined as the ratio of the
Fourier Transform of the dynamic responses at
the six stations to that of the input force at
station 2, were obtained using NASTRAN modal
analysis method. Dampings were introduced into
the system by adding artificial modal damping
coefficient to each mode. The attained trans-
fer functions containing no noise except the
numerical inaccuracies were used as input data
for theoretical verification of the identifica-
tion technique.

The frequencies, dampings and the ampli-
tudes of vibration at the six stations were
obtained using a frequency domain curve fitting
routine. This constituted the first phase of
the signal processing which retrieved eigen-
values and eigenvectors from the system's
dynamic responses. The second phase of the
signal processing is to construct the [M], [C],
[Kg matrices from the eigenvalues and eigen-
vectors.

To demonstrate the capability of damage
detection of the proposed technique, two grid
points on each side of the beam, located 3
inches away from the clamped edge, were
released by splitting each grid point into two
(Fig. 2b). The splitting of the two grid
points induced first stage damage to the struc-
ture. Again the computer programs were run to
obtain the frequencies, dampings and the [M],
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[c], (K] matrices for the damaged structure.

Two more stages of damage were introduced
and the same system identification procedure
was carried out for all the damage cases. In
the second damage stage, two grid points on
the second rows from each side of the beam,
located 3 inches from the clamped edge, were
released {Fig. 2¢). In the third damage stage,
two additional grid points on the third rows
were released (Fig. 2d).

The severeness of the damage induced by
splitting the grid points can be demonstrated
by the resulting frequency changes which, as
seen from Table 1, are very small. The mass
matrices obtained for the four damage cases are
all close to diagonal with off-diagonal ele-
ments one or two order of magnitude smaller
than the diagonal elements. The diaconal ele-
ments of the mass matrices are listed in Table
2, which show very small changes (< 1%) for the
damages produced by splitting the grid points.
Because of the complex nature of the damping
mechanism, the obtained damping matrices wil)
not be correlated to their physical implica-
tions. For the obtained stiffness matrices,
it was found that their inverses, the flexibil-
ity matrices, can provide better physical
correlation for a cantilever beam system. The
flexibility matrices are near diagonal, whose
diagonal elements are listed in Table 3 for
the four damage cases. It is found from these
values that for response stationsbefore the
damage lTocation the flexibility does not change
significantly, while for response stations
after the damage locationthe flexibilities
change progressively according to the severe-
ness of damage and the distances from the dam-
age location. This trend is illustrated by
the graphical depiction of Fig. 3.

To investigate the correlation between the
location of damage and the changes in the ele-
ments of the flexibility matrix, theoretical
derivation can be conducted to obtain the ana-
1ytical expression of the flexibility matrix.
The expressions of the diagonal elements of
the flexibility matrix of a cantilever beam are
listed in the Appendix for the six response
stations. As can be seen from the Appendix,
the elements of the flexibility matrix are
algebraic sums of terms inversely proportional
to the local stiffness, Ej I;. The progressive
changes in the matrix elements due to the
change in local stiffness at a particular sta-
tion are clearly displayed in the analytical
expressions.
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TABLE 1

Natural Frequencies in Hz for the NASTRAN Simulated Responses
of the Cantilever Beam with Four Damage Cases

Modes No Damage 1st Stage Damage 2nd Stage Damage 3rd Stage Damage
1 24.99 24.970 24.828 24 .499
2 157.67 157.66 157.62 157.53
3 443 .82 443.53 441.70 437.55
4 873.60 872.83 868.36 858.68
.
5 1446.93 1446.46 144418 1439.11 .
6 2136.62 2135.90 2132.73 2125.30 -
TABLE 2 o
Diagonal Elements of the Hass Matrices (10'3 slugs)
Stations No Damage Ist Stage Damage 2nd Stage Damage 3rd Stage Damage

)q;,) AL ALY N

314 0.1313 0.1318 0.1312
1979 0.1987 0.1995 0.1989
.2038 0.2028 0.2040 0.204)

h W N -
O O O O O O

.2008 0.2004 0.2008 0.2010
.2011 0.2017 0.2021 0.2035
.1923 0.1927 0.1931 0.1943

TABLE 3

Diagonal Elements of the Flexibility Matrices (10°3 in/1b)

Stations No Damage 1st Stage Damage 2nd Stage Damage 3rd Stage Damage
1 0.5033 0.5016 0.503 0.5021
2 3.9860 3.9756 3.9976 4,0220
3 14.343 14.39 14.430 14,901
4 31.540 31.940 31.803 33.063
5 62.948 62.425 62.389 64.624
6 101.66 101.81 102.40 105.34

4, EXPERIMENTS WITH A CANTILEVER BEAM excite the aluminum cantilever beam with tran-
sient or random impact at station S5, as shown K
in Fig. 5a. The transfer functions from the o

impact station to any accelerometer station

In addition to the numerical verification
of the system identification technique de-

scribed in section 2 as applied to a continuous
structural system, an experimental verification
was also conducted. A cantilever beam having
dimensions 19-1/2 inches long, 1 inch wide, and
1/4 inch thick was used in the experiment. The
beam was 9ade of aluminum, with Young's modulus
1.03 x 10 lblinz, Poisson's, ratio v i 0.33 and
mass density p = 2.485 x 107" slug/in~. Six
accelerometers were attached to the beam at

six stations (Fig. 4). A hammer was set up to

w e
.

e R e L
AT N S0 N

(%,

were obtained by feeding the output accelera- 7.1

tion signal and input forcing function into a
spectrum analyzer: the Nicolet 660B dual
channel FFT analtyzer supported by a Data Gen-
eral MP/200 computer (see Fig. 5b). In the
analyzer, the input and output signals were
digitized and the Fast Fourier Transform of the
signal was performed. The instantaneous trans-
fer functions were obtained by dividing the two
spectra. The final transfer function was ob-
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tained by averaging a series of instantaneous
transfer functions.

The obtained transfer functions were
processed further, according to the mathemati-
cal procedure suggested by the proposed struc-
ture fdentification technique. The final re-
sults are represented in the form of structural
matrices [M], [C], and [K]. It should be em-
phasized that the phase 1 (transfer function)
was experimentally accomplished, in contrast to
the finite element analysis described pre~
viously. As such, this is a totally experimen-
tal approach which will be an effective and
useful technical approach for damage detection.

The saw cut on the cantilever beam, intro-
duced between stations 2 and 3, represents the
damanes of the structure in the experiment
(Fig. 4). The frequencies and damping values
of the lowest vibration modes were obtained
from the transfer functions for no cut case and
the cut case (Table 4). Significant changes
due to cut exist in the experimentally deter-
mined frequencies. Table 5 and 6 list the
diagonal elements of the mass and flexibility
matrices for the no cut and cut cases. It is
also found that the damage introduced by the
saw cut results with significant changes in the
flexibility elements.

TABLE 4
Experimental Values of Frequencies and Damping Ratios of the Aluminum Cantilever Peam
Modes NO CuT CUT CASE
Matural Damp. Natural Damp.
Freq. (Hz) Ratio (%) Freq. (Hz) Ratio (%)
1 19.53 0.360 19.00 0.247
2 122.05 0.241 115.85 0.183
3 339.26 0.125 332.36 0.0788
4 661.73 0.0946 646.91 0.0805
5 1085.22 0.120 1037.46 0.0979
6 1594.59 0.0974 1591.36 0.0973
TABLE §

Diagonal Elements of the Mass Matrices ('IO'6 slugs)

Stations No Cut Cut
1 2.9460 2.8029
2 6.7463 6.0645
3 6.9833 7.8842
4 7.0791 8.3550
5 7.2694 7.9536
6 6.4664 6.5813

TABLE 6
Diagonal Elements of the Flexibility Matrices (in/1b)

Stations No Cut Cut
1 0.3257 0.2526
2 1.8184 1.4985
3 7.5954 7.8514
4 18.594 21.003
5 33.817 51.553
6 66.075 27,246
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Theoretical study, as iliustrated by the
results of NASTRAN simulation, indicates that

the diagonal elements of the flexibility matrix

[F] should deviate in an orderly fashion with
respect to the location of the damage. Com-
paring the flexibility matrices of the cases

cut and no cut (Fig. 6), this orderly deviation

does exist in the diagonal elements and allows
one to identify the location of the cut.

5. CONCLUSIONS AND DISCUSSIONS

The feasibility of using the system iden-
tification technique for a continuous structur-
al system, such as a cantilever beam, has been
demonstrated. Both the numerical simulation
and experimental verification indicate that the
technique is capable of identifying structural
damages. Furthermore, for a cantilever beam,
the location of the damage can be identified

by observing the changes in the diagonal ele-
ments of the flexibility matrix.

However, to obtain useful results for more
practical purposes, a number of improvements to
the technique will be necessary. In the exper-
iment conducted, the cut made to the cantilever
beam was considered a very severe structural
damage, thus resulting in significant changes
of the system's matrices and made the system
identification possible. For real applications
damages of a precatastrophy type are usually
very small., If the error during the signal
processing is large enough to suppress the
deviations in [M], [C], fK] matrices due to
damages, then it is impossible to detect
structural damages by observing changes in the
identified [M], [C], [K] matrices. Therefore,
the requirement of high accuracy signal
processing is essential for practical purposes.

For the present system identification
technique, the accuracy can be controlled in
three steps: (1) the signal acquisition in
vibration measurements; (2) retrieval of the
system's eigenvalues and eigenvectors; and
(3) conversion of eigenvalues and eigenvectors
to the [M], [C], and [K] matrices. The first
step requires careful calibration of the mea-
surement transducers. The second step in-
volves the accuracy of the analog to digital
signal conversion and numerical accuracy in the
proper eigenvalue retrieval aligorithm. The
third step is purely numerical and consists
only of a series of matrix operations.

In our present research, an aluminum
cantilever beam of sufficient length system has
been used. This retained the system in lower
vibration frequencies so that the lowest six
modes were well within the accelerometer re-
sponse characteristics. Attention has also
been given to the structural symmetry so that
unwanted vibrations, such as torsional modes,
were eliminated. Efforts were directed to im-
prove the measurement accuracy.

New mathematical approaches to convert the
eigenvalues and eigenvectors to the [M], [C],
and [K] matrices can be pursued to provide
better accuracy. For example, one can use only
matrices of dimension N x N for an N-degree of
freedom system in the computation algorithms.
As compared to the system matrices of dimension
2N x 2N, used in the present research, such
approach contains four times less the number of
unknown variables. It is expected that accura-
¢y will be improved by the reduction of matrix
dimensions in the numerical array operations.

For a continuous structural system, the
number of degrees of freedom is infinity. If
it is to be modeled with an N degree-of-freedom
[M], [c], and [K] matrices, then the conditions
under which the system identification procedure
is proper should also be verified for practical
application.

APPENDIX: Diagonal Elements of the Flexibility
Matrix of a Cantilever Beam

_ 2

i1 = 261L1

] 2 2 2
fag = 261 (Lyp * Ligly + L)+ Byly
fag = 267 (L1a2 + Lol + Lo0) + 26,(L,,% +
Si{tis” * Listes * Las 2(L23

33
L3L23 + L3 ) + 2G3L3

. 2 2 2
fag = 267(Ly," + L124L24 tlag )+ 2ally *
taataa ; tae )+ 263(Lyg" *+ Lagly + L")
+ ZG4L4

fos = 261 (L1g + Liglys + Lpe®) + 26, (Lyg%
Laslag * Lag ) + 265(Lye™ + L3stag * Las
+ 2(;4(L45 + L45L5 + g )+ 2G5L5

£ = 26, (Lyg2 + Lyglos + Loo2) + 26,(L,.2 +

66 - 261(Lqg 6t26 * L26 2{L26
Loglas * L3g ) * 263(Lgg + Laglye *
Laszg + 26, (Lyg? * hastse 5562) + 265
(Lgg™ * Lgglg * Lg ) + 26glg

G, = _Lj

i L. =L; + . . .+1L
6E; 1 iy 3

where Li is the distance between response
stations

1. the moment of inertia of the beam
cross section

E, the local Young's Modulus
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Fig. 1 Mesh Configuration, Location of Forcing, Crack and Stations
of NASTRAN Simulated Steel Cantilever Beam
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Fig. 2 NASTRAN Grid Points Arrangements for Simulated
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Fig. 4 Geometry, Location of Stations and Cut
of the Aluminum Cantilever Beam
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a. Set-up of cantilever beam with mechanism b. NICOLET 660B, dual channel FFT analyzer,
for application of excitation force supported by Data General MP/200 computer

Fig. 5 Set-Up of Cantilever Beam
Experiment
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Fig. 6 Diagonal Elements of the Flexibility Matrix of the
Aluminum Cantilever Beam
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TIME DOMAIN MODAL ANALYSIS OF A SLOTTED
CYLINDRICAL SHELL

W. Q. Fengl, F. Q. Zhangz, and T. C. Huang
Department. of Engineering Mechanics
University of Wisconsin-Madison

Madison, Wisconsin

53706 USA

The modal parameters will change if a structure changes from

being perfect to being defective.

This paper investigates a

cylindrical shell with a longitudinal slot by the time domain
method. The 11 sets of mode vectors, all of them nearly real
modes, are investigated and the modal shapes are plotted.
When the slotted shell is compared with the original perfect
shell, it is found that several new mode vectors are created
for the slotted shell, and the characteristics of the kept
modes, the mode shapes of the perfect shell which remain for
the slotted shell, will change also.

INTRODUCTION

For many engineering problems, engineers
must know what kind of physical phenomena
change when a structure changes. One such
problem occurs when a structure cracks; twe
aspects of this problem are when the structure
changes from being perfect to being defective
and when the crack propagates. In order to
study these problems, it is necessary to have
fundamental knowledge of the changes of the
dynamic properties of a structure.

Reference (1] investigated the change in
the modal parameters of a perfect cylindrical
when it becomes a shell with a slot which is
lengthened incrementally. The modal parameters
were determined for each length of the slot,
both experimentally and analytically. The con-
clusion of Reference |1] is that the presence
of the slot will not only reduce the magnitude
of the damped natural frequencies of the shell,
but will also increase the number of the
natural frequencies.

In this paper, the time domain method of
analysis wvas used to investigate the same
problem. In addition, the made vectors are
studied in detail.

EXPERIMENTAL MODAL ANALYSIS

The test object is an aluminum cylindrical
shell having a mean diameter of 264.3mm, a
length of 263.0mm and a thickness of 4. 3mm,
with a longitudinal edge slot lmm wide and
152.4mm long. The upper end of the shell is
free and the lower end of the shell is assumed
to be simply-supported, but the shell itself is
more constrained due to the actual fixture,

1

On leave from Wuhan Institute of Water Trans~
portation and Engineering, Wuhan, China

On leave from Chinese Univeraity of Science
and Technology, Hefei, Anhui, China
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which is a circular plate inside the lower end
of the shell. The shell model is shown in Fig.
1. The experimental set-up for the time domain
analysis is shown schematically in Fig. 2.

Points 1 to 25 were used as response
measurement points and an appropriately chosen
point R was used as the reference point (Fig.
1). When an impluse acted upon the surface of
the shell, the free vibration response signals
were taken and digitized through our Nicolet
Digital Scope, Model 260A. The cutoff fre-
quency was 1600 Hz and the sampling interval
was 0.0001 second. The effect of noise and
error In measurement was reduced by averaging
10 sets of the system matrix using a total
record length corresponding to 400 samples or
0.04 second. The oversized mathematical model
with 50 degrees of freedom is used in the
system matrix.

The time response signals are recorded and
digitized by a dual channel digital acope.
There is a total of 26 measurement stations
including the reference station R (Fig. 1). A
total of 25 sets of response signals at two
stations, one of which is the reference statian
R, was recorded, digitized and computed sepa-
rately. There was a maximum of only 2% differ-
ence betveen each damped natural frequency,
computed by ocur pragram for the time domain
modal analysis, and the mean value of the 25
damped natural frequencies. The whole set of
tests was repeated several times to test the
congistency of modal vectors. The wmodal
vectors obtained from these sets of tests show
nearly identical results.

There is only a 15 Hz difference between
the firat mode of damped natural frequency of
155.1 Hz, and the second mode of 171.8 Hz. In
this situation, where the modes are closely
spaced, it is easy to identify the closely
spaced damped natural frequencies in one com-
puter run, but difficult to obtain their
stable and nearly real modal vectors. We
developed the skill of producing each close
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mode separately and obtain very stable and
nearly real modes for each of these two claosely
spaced modes.

It is very difficult for the modes having
damped natural frequencies of 513.8 Hz, 1280
Hz, and 1519.6 Hz to be excited producing the
maodal nodes at the edges of the slot. The
problem was solved by choosing the appropriate
excitation position by trial and error and
developing our skill for exciting either
symmetical or anti-symmetrical modes.

RESULTS AND DISCUSSION

The time domain modal analysis was done by
our program for the time domain modal analysis.
A total of 11 modes was obtained. The results
of the 25 points for the damped natural fre-
quencies, damping factors and modal vectors
are shown in Table 1. The mode shapes and
phase angles for all 11 modes are plotted in
Fig. 3.

Table 1 and Fig. 3 show that the phase
angles are in general within ten degrees of
either zera or 180 degrees. We therefore con-
clude that almost all 11 modes are nearly real
ones. If we draw a line through the middle
point of the slot and the center of the circle,
the mode number 2, 4, 5, 7, 10 and 11 are
nearly symmetrical to the line. In Fig. 4, A%
is defined as the anti-symmetrical point of A,
if A* 1is obtained through the following two
steps: (1} by obtaining the symmetrical point
A} of point A to the line ab, (2) by
obtaining the symmetrical point A* of point
A} to the circular arc. The mode aumber 1, 3,
6, & and 9 shown in Fig. 3 is very good anti-
symmetrical, according to the above definition.

A perfect cylindrical shell has mode
shapes, as shown in Fig. 5a, b, ¢ and d for
the cases of m =0 and n = 2, 3, 4 and 5,
respectively, where m is the number of modal
nodes along the longitudinal direction and n is
the circumferential half wave number |3). The
mode shapes have 2, 3, 2 and 5 aymmetrical
axes for n = 2, 3, 4 and 5, respectively. The
shell with a longitudinal slot not only
exhibits the mode shapes which the perfect
shell has, but creates one, two or more new
mode shapes. There are two effects on the
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retained modes, the perfect shell modes that
are retained by the slotted shell. First of
all, these retained modes have only one
symmetrical axis, which goes through the center
of the circle and the middle of the slot.
Secondly, the local modes in the slot region
have an even number of modal nodes along the
edges of the slot. All the new modes are anti-
symmetrical as defined above. Their local modes
along the edges of the slot have an odd number
of nodes. The comparison of the number of nodes
an the perfect and on the slotted shell is
shown in Table 2.

In order to determine the mode shape
between points 5 and 6, as well as pointa 9 and
10, we measured several extra points on each
circular arc ab and cd, and determined the
mode shape for 513.8 Hz as shown in Fig. 6a.
We guessed that the mode shape is degenerated
from the shape shown in Fig. 6b because of the
large deflection at the points 7 and 8 caused
by the existence of the long slot.

CONCLUSION

According to the results presented above,
it may be concluded that the time domain method
is a very powerful tool in modal analysis. The
two effects of the slot on the cylindrical
shell, in addition to its well known effect on
the damped natural frequencies are that the
characteristics of the retained modes change
and that the new anti-svemetrical modes are
created.
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Table 1 Results of Time Domain Analysis for the Shell with a Slot
(Frequency in Hz, Phase Angle in Degree)
Mode No. 1 2 3 4 5 6
Damped
Natural 155.1 171.8 344.3 438.4 513.8 642.0
Frequency
Damping 4 006732 0.008288 0.003399 0.000562 0.02158 0.000386
Factor
1 Response Mode Amplitude and Phase Angle
h Point Ampl./Phase Ampl./Phase Ampl./Phase  Ampl./Phase Ampl./Phase Ampl./Phase
1 0.017/193.0 1.000/ 0.0 0.150/189.3 2.509/ 0.4 1.207/184.4 0.123/182.9
d 2 1.539/180.2 0.415/ 30.0 5.190/ 5.1 0.579/181.4 0.430/ 5.2 2.056/ 1.5
) 3 1.362/189.9 0.882/205.0 0.074/208.1 2.697/181.2 1.515/ 2.6 2.676/181.1
: 4 0.223/181.3 1.028/184.7 3.717/185.4 0.657/180.5 1.574/ 0.2 2.644/181.2
" 5 0.770/ 8.1 1.243/196.1 5.027/184.6 1.931/ 0.7 0.415/ 20.0 0.122/ 2.3
6 2.052/ 0.9 0.201/249.3 1.902) 0.7 2.390/ 0.9 3.685/ 3.2 2.065/ 1.6
o 7 2.504/ 7.1 0.545/ 15.2 15.773/ 2.4 2.891/182.5 11.782/ 1.5 4.960/182.4
8 2.457/182.5 1.302/ 7.9 17.010/180.4 3.409/180.6 12.383/ 2.1 5.139/ 2.3
9 2.406/195.6 0.581/ 59.0 1.782/182.2 2.396/ 1.2 3.933/ 0.9 2.094/181.0
10 0.603/186.1 0.923/181.0 4.694] 4.5 1.794/ 0.9 0.606/ 7.8 0.020/183.3
11 0.573/ 5.9 1.064/182.2 3.488/ 3.2 0.757/180.3 1.318/ 6.7 2.721/ 0.5
12 1.7/ 2.2 0.827/190.5 0.071/ 58.9 2.645/180.9 1.866/ 6.5 2.585/ 1.4
13 1.491/ 2.7 0.317/ 44.8 5.363/186.2 0.475/180.3 0.657/ 14.9 2.729/180.1
14 1.486/ 0.4 0.637/ 25.5 10.426/ 1.4 2.883/181.3 7.051/ 1.0 3.839/180.0
X 15 1.798/182.3 2.006/ 16.0 10.713/181.0 2.653/181.3 6.773/ 1.4 13.912/ 0.8
16 0.795/ 1.7 0.565/ 10.9 5.364/ 0.4 2.416/184.2 1.332/ 4.6 2.069/182.6
. 12 0.959/180.6 1.191/ 9.1 5.454/180.8 2.574/183.1 1.196/ 6.2 2.100/ 2.9
18 0.089/181.5 0.508/ 0.1 0.140/211.3 1.692/180.8 3.200/181.8 0.042/ 65.6
5] 19 0.045/244.9 0.253/ 4.6 0.027/ 87.0 0.884/181.0 1.563/184.3 0.018/ 83.4
i 20 0.081/189.6 0.645/ 0.7 0.04%/257.6 1.845/ 0.1 0.661/194.7 0.010/198.8
o 21 0.045/238.1 0.193/ 1.4 0.025/ 89.5 0.590/ 0.2 0.408/226.9 0.003/ 2.8
’ 22 0.250/192.9 0.647/181. 2.223/185.8 0.433/180.8 0.553/ 0.8 1.556/180.9
3 23 0.030/ 63.5 0.168/187.1 0.718/189.0 0.140/181.1 0.138/ 35.6 0.492/181.1
B 24 0.310/ 15.2 0.829/183.6 2.155/ 5.7 0.415/180.4 0.734/ 1.7 1.531/ 1.0
i 25 0.086/ 16.1 0.289/186.6 0.681/ 6.4 0.127/181.5 0.178/ 33.9 0.478/ 1.4
L}
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) Table 1  Results of Time Domain Analysis for the Shell with a Slot :
v (Cont.) (Frequency in Hz, Phase Angle in Degree)
o Mode No. 7 8 9 10 1
"~ Damped ;
" Natural 842.1 1075.8 1282.1 1366.2 1519.6
Frequency &
5
. pimPINg  0.000253  0.000624 0.006663 0.000439 0.003608 !
. actor ”
:: Response Mode Amplitude and Phase Angle :
- Point Ampl./Phase Ampl./Phase Ampl./Phase Ampl./Phase  Ampl./Phase '
i 1 1.970/181.8 0.100/ 1.4 0.079/210.1 2.393/ 2.0 0.461/ 2.4 !
N 2 1.737/ 2.0 0.915/181.7 0.514/ 3.9 2.855/181.5 0.522/181.8 3
Al 3 0.183/182.5 1.533/ 2.1 2.056/183.5 2.790/ 1.7 0.167/ 5.1 Y
. 4 2.329/182.1 0.884/182.7 1.399/ 3.0 1.038/ 1.1 2.602/ 0.0 ,
-~ 5 1.481/181.9 1.907/182.4 3.024/ 4.1 2.778/181.6 0.078/ 63.5 .
6 2.204/ 2.1 1.857/ 2.1 3.337/190.7  2.433/ 1.9 * /% '
S 7 2.491/183.3  4.151/187.7 18.887/187.7 4.921/187.7 8.578/ 9.5
: 8 2.675/181.7 4.313/ 5.0 20.499/ 7.9 5.789/183.6 8.725/ 7.4
9 2.173/ 1.8 1.631/182.0 3.485/ 3.6 2.279/ 1.8 3.707/180.2
10 1.544/181.7 1.884/ 2.5 2.706/187.4 2.605/182.6 0.082/ 52.6 %
< 11 2.220/181.0 0.780/ 1.6 1.349/185.7 1.128/ 1.6 2.029/ 8.6 °4
-, 12 0.205/182.4 1.484/182.5 1.907/ 3.4 3.038/ 2.2 0.238/ 4.9 3
” 13 1.715/ 0.9 1.069/ 1.2 0.760/180.1  3.044/181.3 0.412/185.9 .
- 14 2.415/182.9 2.116/185.5 3.429/ 6.8 3.171/187.5 2.737/185.3 by
o 15 2.381/183.1 2.089/ 5.6 3.360/188.6 3.273/188.2 2.911/183.9 A
¢ 16 1.979/182.4 0.349/182.5 13.973/ 6.5 4.481/190.8 * / % j
17 1.952/183.4 0.358/ 2.1 13.342/187.2 &4.116/188.7 * | %
18 0.751/182.0 0.001/ 74.2 0.074/132.5 0.716/187.4  2.443/184.5 ¢
- 19 0.353/187.0 0.011/202.6 0.030/186.0 0.211/181.8 0.678/182.2 -
3 20 1.379/181.7 0.010/ 10.8 0.043/208.4 1.575%/ 1.5 0.796/181.4 ;-'
X 21 0.439/181.5 0.002/220.0 0.027/264.1 0.473/ 2.2 0.779/185.9 b
- 22 1.340/181.7 0.456/183.0 0.777/ 2.3 0.570/ 1.2 1.204/180.0 g
n 23 0.429/181.8 0.143/184.8 0.122/ 0.8 0.196/ 2.6 1.085/181.3 X
: 24 1.306/181.8 0.448/ 2.8 0.731/180.0 0.556/ 0.7 1.290/182.2
p 25 0.419/182.0 0.144/ 3.6 0.135/194.5 0.189/ 2.7 1.122/190.9
o * Indicates missing data. E 3
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Table 2 Comparison of the Number of Modal Node of the Perfect and Slotted Shells :
(Damped Natural Frequency in Hz) ~

e

i\

Perfect Shell Slotted Shell t.ﬁ

n Damped No. of Damped No. of Damped No. of Damped No. of k‘

and Natural Modal Natural Modal Natural Modal Natural Modal ,

n Frequency Node Frequency Node Frequency Node Frequency Node ‘

Ve

' n=0, n=2 190.0 4 155.1 341 171.8 440 - - R
e

. m=0, n«3 510.0 6 344.3 5+¢1 438.4 640 515.8 6+2 {:"
* e
N m=0, nw=4 945.0 8 642.0 741 842.1 840 1282.1 7+3 b
' m=0, n=5 - 10 1075.8 9+1 1366.2 10+0 - - |

~

mel, ned - - 1519.6 842 - - - - -

E e
v o
d =~

" Notes for Table 2: ok
1. o indicates the number of modal node along the logitudinal .

. wave and n the circumferential half wave number. -‘

: 3

' 2. The results of frequency for perfect shell are quaoted from N

v Reference 1. P\'
& b
b~ A,
. 3. In the columns of number of modal node for the slotted shell, '

the first number indicates the number of wodal node along the

\ upper circumference and the second one, the number of modal o
\ node along the two edges of the slot. v
J

. 4. The number of modal node for the case m=0, n=3 and damped ::‘
natural frequency 513.8 Hz will be discussed in the section of -

A "Results and Discussion". -
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' APPLICATION OF THE ITD ALGORITHM TO
LANDSAT TRANSIENT RESPONSES

R. R, KAUFFMAN
GENERAL ELECTRIC COMPANY, SPACE SYSTEMS DIVISION
PHILADELPHIA, PENNSYLVANIA

Frequency, damping, and three degree-of-freedom mode shapes were estimat-
d ed from data transmitted from the orbitting Landsat-4 and Landsat-5 earth ob-
s servation spacecraft. The data was comprised of three channels of time
history data corresponding to orthogonal rotations of the spacecraft. The data
was processes using the Ibrihim Time Domain Technique. It was found that
multiple modes could be characterized per channel of data. Damping estimates
are on the order of 0.2% for low frequency (< 3 Hz) modes and on the order of
0.5% for high frequency modes.
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INTRODUCTION

The purpose of this paper i8 to present results
from the application of the Ibrahim Time Domain (ITD)
algorithm to estimate the dynamic characteristics of
orbital spacecraft. The spacecraft considered are the
Landsat-4 and Landsat-5 earth resources satellites.
This study was undertaken to validate analytical pre-
_ dictions of the spacecrafts' response to Thematic

- Mapper (TM) and Multi-Spectral Scanner (MSS) peri-
odic excitation, and to determine spacecraft modal
damping values,

v g

»

.

The orbital configuration of these spacecraft is
shown in Fig. 1. The two primary sensors are the
TM and the MSS. Both instruments incorporate
scanning mirrors which alternately tmpact rubber
bumpers at either end of their travel. The TM is
much larger than the MSS and provides much higher

THEMATIC MAPPER

{DRIVES AT 7,21, 38, ... H2) MULTISPECTRAL SCANNER

(DRIVES AT 13.82, 40.88, 00.1, ... H2)

Fig, 1 - Landsat-4 vehicle

'l'.'l'l.!‘l<

>

resolution. The high resolution of the Landsat TM
makes it susceptible to self-induced vibration, or
jitter, and requires the ground correction of the
images. The TM provides an order of magnitude
improvement in resolution over the MSS,

Because initial analyses indicated that the jitter
resulting from the mirror impacts would cause un-
acceptable distortion of the TM images an Angular
Displacement Sensor (ADS) was attached to the TM
base. Payload Correction Data (PCD) which is com-
prised of Gyro data (< 2.0 Hz) and ADS data (2.0 Hz
through 125,0 Hz) is transmitted from orbit. This
data corresponds to three orthogonal angular dis-
placements of the TM, This allows the measured
motion of the TM to be transmitted to the ground for
correction of the jitter induced distortion. The mag-
nitude of jitter must remain below set limits for the
sensors to obtain accurate images.

The periodic excitation from the scanning mir-

as the mirror impacts resilient stops at either end of
its travel, The Fourier components of the resulting
pulse train are rich in the odd harmonics of the scan-
ning frequency (7.053 Hz for the TM and 13.656 Hz
for the MSS). The spacecraft dynamic response to the
scanning forces is dependent on the structural dynam-
fc characteristics as the Attitude Control System [ACS)
does not operate at 7 Hz and above. Since analytic
predictions of jitter are highly dependent on the modal
characteristics of the structure, it is vital that these
characteristics be accurately determined, To define
the spacecraft dynamics, a modal math model of the
spacecraft was synthesized from existing finite ele-
ment models of the spacecrafts main body and append-
ages. The resulting spacecraft model shows large
amplifications of the excitation forces at the numerous
structural resonances which begin with a solar array
resonance at 0.4 Hz. The model has 70 modes below
50 Hz. Very large jitter responses occur with the
scanning frequency or one of its odd harmonics coin-
cide with a structural resonant frequency. Although

rors is caused by force pulses in alternate directions

pre-flight modal tests were used to partially validate

o
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the dynamic model, a range of values were used in
the pre-flight analysis. A modal damping variation
from 0,05 to 1.0 percent was used because it could
not be reliably measured on the ground. Therefore,
the objective of this study was to analyze the PCD to
determine the modal frequencies and damping coef-
ficients and compare these with analytic values. Also
of interest is how consistent the modal frequencies
are between spacecraft,

The Landsat data is relatively unique. The data
covers a much broader frequency range than is nor-
mally available from orbital vehicles, Orbital data
is normally limited to frequencies below that of the
structural modes and is used for control system
evaluation, The Landsat data covers a frequency
range of more than two orders of magnitude above the
fundamental structural frequency of 0,4 Hz, In the
past modal parameters have rarely been measured in
orbit and with limited results. Ref.[ 6] documents
an example where orbital measurements on the OSO-
8 were transmitted to earth. From this data, the
damping of one mode was successfully determined,

A relatively new Ibrahim Time Domain (ITD)
analysis technique was selected to process the PCD,
This technique can use either random vibration or
free decay data to estimate the resonant frequencies,
modal damping coefficients, and mode shapes, It re-
quires no knowledge of the applied force. It is ex-
tremely powerful in that many modes can be obtained
from the analysis of a limited number of channels of
data. The coding of the method was obtained from the
NASA Langely Research Center and was a revision to
the original Ibrahim code made by R. Pappa.

This study uses the ITD method to evaluate the
modal analysis and is comprised of three main
activities: investigation of the ITD algorithm's char-
acteristics using a simple Five Degree-of-Freedom
(DOF) system, application of the algorithm to a
finite element model of Landsat-4, and application of
the algorithm to data transmitted from the orbiting
spacecraft.

In the first part of the study, a simple five DOF
system is used to investigate the characteristics of
the ITD algorithm, This algorithm characterizes a
structure using time history data. The data may be
of two forms: free decay or random vibration. In
this study, only free decay data is considered. The
algorithm's sensitivity to noise in the data and to
several user input parameters is investigated. Also
considered is the ability to characterize multiple
modes from a single channel of data, This ability is
required for the following parts of the study.

Next, a finite element model of the Landsat-4
spacecraft is used to simulate orbital conditions, A
forcing function representing an MSS shutdown event
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was applied to the model and the time history re-
sponses developed are input to ITD. This model
gives an indication of how well the algorithm will
work under ideal conditions (very low noise levels,
linear system, actual free decay data, etc.). This
sets an upper bound on the performance expected in
the final portion of the study.

The final portion of the study involves Landsat-4
and Landsat-5 time history data measured in orbit.
The modal parameters generated from the data are
compared with both the original analytic model and
with modal parameters generated via ITD from ana-
lytic time history data.

THEORY

The ITD method uses free decay transient re~
sponses or random excitation responses to identify
the natural frequencies, complex mode shapes, and
critical damping ratios of a structure. In this study,
only free decay transient responses are considered.
The ITD method reduces these transient decays into
their complex exponential forms,

Invoking the assumption that any structure may
be represented by an equivalent finite lumped mass
system results in:

@2 M1+ AlC)+(K) {P} = o, 1
The goal of modal vibration testing 1s to determine
values of A (eigenvalues) and P {mode shapes) that
satisfy the above equation, It should be noted that
for underdamped modes, A and P occur as complex
conjugate pairs and the following relationshps are
valid.

A = a+ib, )
Wy = b, 3
w = 2+ b, @)
p = a/Na®+b? | and (5)
W, = Vi- p2 w (6)

where Wy and W), are the damped and undamped
natural frequencies and p 1s the damping ratio.

The free response of a linear multi-degree-of-
freedom system at station i and time ty may be given
as:

2m xkt
X! (tj) = le = K=21 Plke (W)
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where m is the number of modes that are excited,
Eq. (7) can be written in matrix form as:

(X] = (PI1[A], (®)

Similar equations can be written at times At; and
Aty later. It can be shown that manipulation of these
equations results in

-1

(1811g) ™" XUy =0 (9)
where

y

(o] =|x
- Atl-

Atl

{e] = , and
Xat
P

4) =
LPAtl

Eq. (9) is an eigenvalue problem which enables the
computation of a system's modes, frequencies, and
damping using only measured free decay data at
various locations, The following expressions relate
the eigenvalues of Eq, (9) () to those of Eq. (1) (A):

A = B+1y (10)
A =a+th (11)
1 2
s =z mPepd (12)
I T
b =i tan (Y/9 (13)

The eigenvectors (modes) of Eq. (1) (P) are simply
the first n elements of the eigenvectors of Eq, (9).

The mode shapes are compared via the modal
Tot roduct The cogine of the angle between modes
and { Pk may be defined as:

n
£ P, + P
' (21 M ik
co8(g)=

" Sz 1172 (14)
z ®) E (P

where n is the number of degrees of freedom in the
modes being compared. The value of the dot product
can range from -1,0 to 1.0, The gign of the dot
product merely indicates the phase relationship of

the two modes (positive for in phase, negative for
out of phase). The magnitude of the dot product in-
dicates the level of agreement between the shape of
the two modes. A magnitude of one indicates perfect
agreement while a value of zero indicates no agree-
ment, A dot product value of 0,85 indicates good
agreement,

When using the ITD algorithm, there are several
guidelines for parameter selection that should be
followed. They are:

SF
N1l s 20 t) (15)
NDELTA < N1, (16)
N2 = 2#«NDELTA, an
_N:FO L > f—a , and (18)
min
N1 # N2, 19)

The variables in expressions (15) through (19)
are defined as follows:

N1 - Number of time steps shifted
fromg to g ,

N2 -  Number of time steps shifted
within halves (for creation of

"transformed stations'’) of re-
sponse mairices

NDELTA - Number of time steps shifted
between upper and lower halves
of response matrices

NCOL -  Number of time steps used

SF -  Sample frequency

f1r -~  Maximum expected frequency
content, and

f ‘mi - Minimum expected frequency

n
content,

For more information on the ITD method, see Ref.
[ 1] through( 5 ].

FIVE DEGREE-OF-FREEDOM MODEL

A five degree-of~freedom (DOF) model was de-
veloped to evaluate the ITD method and to determine
ITD input parameter sensitivity. The lumped mass
model that was used is shown in Fig, 2, The un-
damped natural frequencies of this system can be de-
termined by an exact analytical method,

The analytically determined modal parameters
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Fig. 2 - Sample five DOF model

were compared to ITD results for a wide variety of
ITD input parameters. Overall, the ITD algorithm
showed good results. Fig. 3 shows the effect of
white noise in the data on ITD damping results, The
calculated frequency was virtually uneffected by noise.
Fig. 4 plots NDOF against damping ratio for a signal
distortion of 0,.568%. As can be seen, the ITD solu-
tion shows good agreement with the analytic data.

The reduced number of measurement stations had
very little effect on the calculated frequencies,

1 r
g 10
e
:
8 [ ]
3
¢
° J
(] 10 0 0 «© 0 [ ]
PERCENT SIGNAL DISTORTION
o 8 DOF PROBLEM EXACT =
& NDOF = 28 ITD  oeeseee

Fig. 3 - Effects of white noise

- - oo sy
° L | 1 | i |
) 2 3 4 8
NUMBER OF STATIONS
o S00% SIGNAL OISTORTION EXACT =
o NDOP = 38 ITD  reoeems

Fig. 4 - Effects of reduced measuring stations
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ANALYTICAL ORBITAL MODEL ANALYSIS

A finite element model of the Landsat-4 space-
craft in its orbital configuration was developed. This
model was synthesized from various substructure
models verified by preflight test data and combined
by a stiffness coupling routine, The total orbital
model is comprised of 257 nodes and 819 dynamic
DOF's.

There are two main sources of excitation that
are considered in this analysis. These are the TM
and the MSS. These systems are illustrated in Fig. 1,
The TM and MSS excite the structure through the
motion of large scanning mirrors. These mirrors
impact resilient stops as they scan back and forth, In
this analysis, it is assumed that when a sensor is
shutdown, its scanning mirror's motion stops instan-
taneously. Actually, the mirror will continue to scan
at a decreasing rate for several cycles while energy
is lost in various mechanical processes.

Transient response time histories were generat-
ed for eight DOF's in the model via the DYNAMO
transient response routine MERTA, In all cases, an
infinitesimal amount of white noise (SNR = 106) was
added to the time history data. The DOF's chosen
were the TMcg 8 X, 6Y, and 6 Z, and the MSS cg
6 X, the solar array drive 6 Y, and the K-band an-
tenng gimbal drive 6 X, 0 Y, and 6 Z directions. The
three DOF's for the TM correspond to the measure-
ment stations on the satellite while forcing functions
may be applied at the remaining DOF's, After the
transient responses are run, Fast Fourier Trans-
forms (FFT) of them are generated. While the FFT
is not part of the ITD algorithm, it compliments the
ITD results by giving the relative magnitude of the
modal responges. It should be noted that for the
sampling frequency and sample size used in this anal-
ysis, the FFT frequency resolution is limited to one
Hz, Also, for all FFT's plotted, the 0. Hz frequency
component i8 set to zero, Due to the relatively large
magnitude of the rigid body motion, dynamic re-
sponses tend to get swamped,

The ITD algorithm was applied to simulated MSS
data, This data corresponds in format to PCD. The
MSS excites the structure through the motion of a
scanning mirror. Data is measured upon shutdown of

" the MSS to achieve free decay data, A parametric

study varying NDOF was performed. Fig. 5 presents
this study. Each curve on the plot represents the
frequency of a particular mode for various values of
NDOF. The frequencies converge on the correct re-
sults as NDOF increase. As can be seen in Table 1,
for the case with NDOF = 60, the analytical and ITD
frequencies agree quite well, Additionally, the
damping values show fairly good agreement for most
of the modes, It should be noted that damping values
coverge more slowly than frequency values.
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TABLE 1 '
Comparison of Analytical and ITD Modal N
Parameters
NDOF = 60 Case***MSS @ - X Exitation .
A ANALYTIC |ANALYTIC JANALYTIC| ITD ITD *.
; MODE FREQ. DAMPING | FREQ.| % & [DAMPING .
r NUMBER (H2) (% C/C) {Mz) 1% C/Co) N
" 1618 1.0 1.338]-17.28] 19.018
12 2.148 1.0 2.108 E_J 1313 e
24 14.070 10 [w02] .| .90 i
. 2 16.771 10 16.758| -.08 J24 ey
Y 30 20.088 1.0 20.081 07 1.103 .
» 28.881 10 |20.002] .08] 1.104 ;
4 3289 10 [32008] -.07] 081 L
43 38.112 1.0 38.083] -.17 041 't
49 30.108 1.0 37.080] -88] 2238 '
50 30.238 10 [se21e] -08] ¢ -
58 42.144 1.0 41984 -4&3 1.177 ™
9 «“sn 1.0 Jesssa| .01 181 W
g ] €6.987 10 |essen| -.03] .82 o
e 108 78513 1.0 70.407] -. W4 1.163 :.~
;- to the loss of high frequency data and aliasing, In- '.
creasing the amount of data used increases both the '
50 run time and computer memory required. This can
’ lead to greatly increased computer costs. A possible :t
‘ © solution to this problem is the use of digital filters to :r
iJ - allow analysis of narrower bandwidths of data. A
a 2 b
t, 2 It should be possible to determine which modes \
g i will be excited by a particular forcing function by
l looking at the mode shape. Thus, a Theta-X forcing o
$) I function should excite Solar Array bending modes, =
? 10 Boom Y-bending modes and Gimbal Drive Assembly o
o Lt L 1 L 1 1 bending modes. A Theta-Y forcing function should '
) 10 20 30 40 50 60 70 80 excite Solar Array torsion modes, Boom X-bending oo
X FREQUENCY (H2) modes, and Aximuth Drive modes. A Theta-Z forcing "
3 function should excite Elevation Drive and Solar Array
Fig. 5 - NDOF vs. frequency FEM data edgewise modes, Finally, various local modes are -
- not likely to be excited. It was found that there is e
Several points can be made about this analysis of good correlation between expected and actual results. :\f
M the orbital model. First, it should be noted that one The method does have difficulty picking up higher J
s of the guidelines mentioned in this Section was not met. order appendage modes. This 18 not surprising con- -
-’ Rearranging Eq. (18) ylelds: sidering the extremely limited instrumentation being -~
o simulated, These higher order modes are not likely !
to be well coupled with the center body. Also, the -
e F S 38F 20) fundamental solar array modes were not excited, .
. min NcoL These modes have frequencies lower than the 3 Hz -
o) minimum frequency allowed for in expression (20). I~
* Therefore, it i8 not surprising that these fundamental
2 Since both SF and NCOL are equal to 500, expression modes are not recovered,
. (20) implies that any results for modes with a fre- (s
quency less than 3 Hz will be questionable, Looking Twelve modes were extracted from the simulation
at Table 1 shows that damping values calculated for data. The frequencies of these modes fell between 14, -
- modes in this low frequency range are generally in- and 79, Hz, The calculated (via ITD) frequencies and :-'.
- accurate, However, all other modal parameters show mode shapes agree very well with the original ana- N
. good agreement with the actual values., In order to lytical modal parameters, The calculated damping )
) : decrease the value of f,,;, it would be necessary to values showed good agreement with the original values s
decrease the sampling frequency or increase the These results verified the viability of using the ITD *
amount of data used, Both of these actions have bad algorithm to analyze data in the format transmitted b
effects. Decreasing the sampling frequency can lead from orbit. -
."_ -
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ORBITAL DATA ANALYSIS

The data used in this analysis can be divided into
two major subdivisions: Gyro data (< 2 Hz) and Pay-
load Control Data (PCD) (0~125 Hz)., While the Gyro
filter starts to roll off at 2 Hz, it is possible to mea-~
sure responses to a somewhat higher frequency. Alsq,
the wide bandwidth of the PCD precluded its use for
determining modal characteristics below 3 Hz, Thus,
both types of data must be analyzed to investigate the
entire frequency range from 0 through 125 Hz,

Both the PCD and Gyro data correspond to Theta-
X, Theta-Y, and Theta-Z angular displacements of
the TM. The Gyro data has a sampling rate of 15,635
samples/second and thirty seconds of data are re-
quired for the ITD analysis. The PCD has a sampling
rate of 500 samples/second and one second of data is
required for the ITD analysis,

Three flight events are considered. These are a
Landsat~4 MSS shutdown, a Landsat-5 MSS shutdown
and a Landsat-5 TM shutdown. In each of the events,
the appropriate instrument is shutdown. The PCD re-
coxded after the shutdown is theoretically a free de~
cay. In practice, the actual data is somewhat contam-
inated by solar array drive, Ku-band antenna drive,

S s A b 7y S50 I qruse it ]

and attitude control system activity, The extent of this
contamination can not be accurately gaunged. It should
also be noted that when the Landsat-4 data was mea-
sured, the TM had shut down shortly before the MSS
and may have influenced the results.

This data presents several challenges to the ITD
algorithm, First, with only three rotational channels
of data, the instrumentation is very limited. The
data includes the effects of noise and structural non-
linearities, Also, as was mentioned in the preceed-
ing paragraph, several onboard systems created an
undetermined amount of contamination in the data.
This contamination will cause the data not to be a
true free decay, which is the form assumed by the
ITD algorithm,

In spite of these difficulties, the method worked
quite well. For each flight event investigated, ap-
proximately twenty modes have been characterized.
The frequencies measured show good agreement with
analytical predictions, with 75% to 80% of the mea-
sured frequencies falling within 10% of the predicted
frequencies. There is also good agreement with FFT
results. The calculated modal parameters are shown
in Table 2,
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TABLE 2
Results of ITD Analyses of Orbital Data
Landest-4 Landgst-§ Landsat-$
Analytic Modal MS8 Shutdown MSS Shatdows T™ Shutdown
Treq Freq AFreg Damp Dot Freq 4Freq Damp Dot Freq A¥req Damp Dot
Mode ¢ (Hy) (Bs) W (C/CC) Product  (Hh) R (IC/CC) Product  (H2) o (SCC/CC)  Product
7 0420 0.3 -19 0410 -0.783 0.2 -4 0.215 -0.931 0,381 -11.0 1.%7  o0.9¢8
[} 0.763 0,08 13,7 1007 0.4 0.7 3.7 -0.108 0,908 0.780 2.8 -0.818  -0.100
’ L2090 LI -39 0825 -0.782 1.400 188 3.198  -0.112
10 L.m 1108 -10.7 0.818 0,98
1 1618 1.7 98 0.13 0,878 1.888 - 8.7 0.550 -0.%40
13 2.45 2.7M 303 -0.004 0,548 2.764 284 0.0 -0.99 2.381 110 0.493  -~1.000
" 4182 4180 -01 0203 -0.088 4810 11,0 -0.875 0938 5,410 9.3 2.018  0.%41
1 8,470 6161 -4.8 3.40  -1.00
1] 6.918 5.3M -22,0 10,008 0,862
22 13,63 11299 -10,6  $.041 0,781
u u,.078 13,044 -7.3 306 -0
37 18,7711 15,14 -99 2,33 <0012 11,136 1.1 1922 -0.464
20 15,183 17483 -39 6156 0951 16,814 - 7.4 .51 0.7% 18.1% -6.3 0.788  0.976
1 19.402 19,688 1.3 -0.39 o0.808
) 20,066 20,932 4.3 1.680 0.990 31,419 6.7 0.827 0,98
3 23,508 21,121 -10.1 3,887 -0,988
38 25,017 23,617 -8.6 2.603 0.094
» 20665 127135 -5.3 5,363 0,81 28.008 - 2.0 140  -0.891
a“ 2,003 .24 - 8.0 1.497  0.992
“ 23,230 sTon -2 1.00 0.981
7 30,011 .00 -19 1,433 0,988
. 38,908 37.988 - 2.4 -2.312  0.967 xS
7 2,840 39,48 0.2 -0.808 0,116 .
[ .30 39.36 -28 1,104 0718 41241 1.9 L2 0.842 e
[ .80 42,404 Le .02 0.99 b
[ 43,656 42.781 0.3 3798 -0.08 .07 -4.1 0.53  0.69
@ W.807 W7 -4.6 1385 -0.957 46.608 - 4.1 139 0.9 48,478 -0.3 <1401 0,990
n .08 50.511 0,01 0.0 -0.037
73 1,010 53.3% [ R} 0.900 0,917 KA
" 84,72 82,857 - 3.4 1,838  0.900 O
(1] 58,906 .204 0.5 1.46 0,943 .
05 00,369 60,135 -0.4 1478 0.983 s0.28 - 1.8 .00 <0.978
” 05,067 63,027 -36 1218 -0.468 64,760 - 1.0 0.470 0. 99 .,
Ll 66,200 e4.901 -3.0 LR -0.818 Db
" 6T.140 07143 0,004 3,837 -0.941 C»‘l
” 70,830 88,497 -3.3 0988 0,773 6408 158 -0.928
4 108 76.993 0,741 -18.0 0852 0.9%
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One point of interest is that the fundamental
flexible mode (analytic mode 7), a solar array flap-
ping mode, is consistently found to be about 10%
lower in frequency that expected. This is likely to be
due to various effects that were present during ground
based testing, Several effects that were present dur-
ing testing may have caused this frequency shift.

The solar array was hung on a bungee suspension

system to simulate zero-g conditions. However,
suspension effects were included analytically and do
not appear to account for the shift.

Virtual air mass is significant and was included
as a cylinder of air about the solar array chord. Tip
effocts could reduce the virtual air mass which would
explain the higher orbital model frequency,

Also, as the ground test was performed at much
higher amplitudes than are seen in orbit, clamps
were used to preload the hinge- joints to prevent gap-
ping during the test. Therefore, structural nonlin-
earities could be present which could explain the fre-
quency shift, This data is a confirmation of the im-
portance of such effects in the testing of large space
structures.

One of the primary goals of this analysis is to
determine the structural damping in orbit. The
damping values are critical in determining the mag-~
nitude of jitter displayed by the spacecraft, with low-
er damping leading to high jitter. As a worst case
analysis, prelaunch jitter predictions assumed a
damping value of 0.05% for all modes.

The smallest reasonable (i.e., non-negative)
damping value extracted from the orbital data was
found to be 0.215%. Additionally, as a general trend,
low frequency modes (below 3 Hz) tended to have
damping on the order of 0.5% while higher frequency
modes tended to have damping on the order of 1 %.
Thus it would appear that the prelaunch damping esti-
mate was conservative by about an order of magni-
tude. This conclusion should be viewed with some
caution as damping is the modal parameter least ac-
curately characterized by the ITD algorithm, Ad-
ditionally, the ITD generated damping values tend to
be biased high, Allowing for this, a conservative
estimate for orbital damping values is on the order
of 0.2% for low frequency modes and 0.5% for high
frequency modes, Thus, the prelaunch worst case
analysis was adequate.

It should also be noted here that there is some
evidence that the damping increases as response
levels increase. In comparing Landsat-5 MSS and
TM shutdown, both modes 7 and 11 show significantly
higher damping levels for the TM case, These modes
are the first and second solar array flapping modes,
Tbe only other mode for which a reasonable damping
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value was found for both events is mode 28, The MSS

case damping is roughly twice that of the TM. How-
ever the MSS data shows a relatively poor mode
shape match so the damping comparisons are ques-
tionable,

Algo of interest {s that the Landsat-4 MSS shut-
down damping values are generally higher than the
corresponding Landsat-5 values, This may be due to
the fact that in the Landsat—4 data the TM had shut-
down shortly before the MSS shutdown event. The
effect of the TM may not have had time to die out.
This would lead to higher response levels which may
explain higher damping values.

Another major concern of this study was deter-
mining how consistent the resonant frequencies were
between the two spacecraft. It was found that 90% of
the modes occurring in the two MSS shutdown events
were within 10% in frequency. Conversely, if Land-
sat-6 TM data is compared with either MSS case,
only about 55% of the excited frequencies are within
10%. Thus it appears that the resonant frequencies
are more dependent on forcing function than space-

craft and the two spacecraft are modally very simi-
lar,

The use of gyro data to determine low frequency
data was very successful. Only one mode below 3 Hz
was not excited in at least one of the events. That
mode, number 13, is expected to occur at 2, 869 Hz
and is a Ku-band antenna elevation drive mode. Thus
it is both well above the roll-off frequency of the
filter used on the data and is a mode shape unlikely
to be excited by the scanning mirrors' motion. Thus
all the modes expected from the low frequency data
were characterized.

There was one anomalous result from the gyro
data. A response of approximately 0.2 Hz was
found., While this response may be due to some on-
board activity, no definite relation was found to any
major satellite system. A more likely explanation
is that this response represents a subharmonic of
the fundamental solar array bending mode at approi-
mately 0.39 Hz, The 0.2 Hz mode s similar in
shape to the 0.39 Hz mode., Such responses some-
times occur in non-linear structures, though gen-
erally at much lower amplitudes than the primary
response, The solar array may be considered non-
linear due to non-linear effects In its hinges. The
ITD algorithm is more likely to pick up such har-
monics in narrow bandwidth data including few modes,
such as the gyro data,

CONCLUDING REMARKS

It was found that analytic predictions and mea-
sured data showed good correlation, As orbital data
measurement was far from a controlled experiment
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and instrumentation was very limited, this points out
the power of the ITD algorithm. With further de-
velopment, the ITD algorithm could become a very
powerful tool for modal analyses.

The use of narrow bandwidth gyvo data to deter-
mine low frequency modes was particularly’success-
ful, This points ont the potential for using digital
filtering of data to investigate narrow bandwidths of
data instead of the entire frequency range at once,
This should lead to improved results. Also of im-
portance for future work is the development of soft~
ware which more accurately predicts damping values.
Current programs are biased toward predicting high
damping values, Several developments currently
underway in the industry should correct this problem,
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DISCUSSION

Voice: Did they actually try to correct any of

the images?

Mr, Kauffman: They have to. That is standard
procedure for the Thermatic Mapper because they
cannot tell without correction exactly where it
is pointed.

Voice: In what way would your analysis help

them in that?

Mr. Kauffman: The major thing we did was to
confirm that our pre-test analysis had been
adequate, and also that it had been
conservative. We assumed damping as low as .052
in our analysis. The jitter of the spacecraft
is very sensitive to the damping. In this case
we determined the damping was higher than the
damping we assumed and that the analysis was
adequate. They had already been able to
determine that they were getting adequate
correction from the image processing.

Mr. Huang (University of Wisconsin): 1In your
conclusion did you mention that the Ibrahim Time
Domain has a noise problem?

Mr. Kauffman: What we are saying 1s, at least
from our analysis of the small model, if you
start running up to 20%, 30% or 40X signal
distortion, 30% noise or very high noise levels,
it breaks down. In general you don’t see that
in our kind of application. So, it was not a
problem for us.

Mr. Huang: Although we do not use Ibrahim’s
program, we developed our own program, we
checked the simulation with a procedure similar
to Ibrahim’s, and it is very good. The noise is
eliminated by expanding the system matrix.

Mr, Kauffman: What noise level did you go to?
Mr. Huang: We tried several levels.

Mr. Kauffman: Did you go as high as 102?

Mr, Huang: We went higher than 10%7. We tried
our own, so we just wondered. We thought
Ibrahim’s method should be very good, too,

because we were more or less influenced by his
method,
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THE IDENTIFICATION MATRIX AND CONVERGENCE OF PARAMETERS IN “"OFF-LINE" SYSTEM IDENTIFICATION

Ken Tomita and Darrell A. Frohrib
Mechanical Engineering Department, University of Minnesota

111 Church Street S.E., Minneapolis, Minnesota

55455

guaranteed. The identification matrix

The identification matrix characterizes the mathematical properties of a system's model in
conjunction with an identification algorithm;

criterion with respect to system parameters.

uniqueness of obtained system parameters is
is the second partial derivative of
The matrix can be reformulated as part of

an error

the identification algorithm based on the least square identification concept. The
identification matrix also relates least square identification to output distinction
identifiability. Numerical examples of these roles of the identification matrix are
presented.
NOMENCLATURE u input vector
v Lagrange multiplier or co-state vector
A(p) system matrix (function of parameters for parameters (p) in an adjoint
(p)) system
B(p) excitation matrix w Lagrange multiplier or co-state vector
C(p) measurement matrix for the state, x, in an adjoint system
H Hamiltonian x state vector of a mathematical model
B, second order partial derivative of xg initial condition for x
Hamiltonian with respect to a vector Yy output vector of a mathematical model
(r) 2 augmented perturbed error state vector
I unit matrix zy partitioned vector of z
J integrated square error or performance superscript T transpose

index

N-th iteration stage

observability Gramian (observability
matr ix) or second order partial
derivative of the performance index
(J) with respect to a state vector (x)
at the zero slope point

o) identifiability matrix or second order
partial derivative of the performance
index (J) with respect to parameters
(p) at the zero slope point

[s) weighting wmatrix in the performance
index (J) {positive definite
symmetric)

transition matrix

partitioned transition matrix

oz

XX

"3 -3

axx known coefficient in an example system

e error

h first order partial derivative of
Hamiltonian

known coefficient in an example system
parameter vector
augmented state vector
known output from an actual system
time
initial time

1 final time

LG BLN -
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superscript * true value
partial derivative

INTRODUCTION

This paper discusses identifiability and
convergence characteristics associated with a
deterministic "off-line"™ identification method.
Deterministic "off-line" identification refers
to systems which are governed by a first order,
linear, time invariant vector differential
equation without stochastic noise. The “off-~

line®™ problem refers to treatment of data s
previously acquired in system test. System :
parameters are formulated as unknown but .
constant; coefficients of the system's vector -]
differential equation are a function of systenm ~
parameters. It is assumed that the system can -
be monitored during a time interval prior to —
identification; the identification problem o
becomes that of seeking "best fit"™ parameters U
from stored test data. o
*
While identifiability generally establishes o
uniqueness of identified parameters, there are K
two different identifiability  definitions 3
associated with this formulation (4); one is -
:J
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least square identifiability (2), and another is
output-distinction identifiability (3,4). In
least square identifiability, conceptually
depicted in Figure 1, an optimization concept is
involved to minimize square error between
measured data from the actual system and the
output of the corresponding system model. If
the error has a local minimum for a set of
identified parameters, the system is termed
"locally identifiable” in a least square sense.
Whereas least square identifiability involves
test data, output-distinction identifiability,
depicted in Figure 2, involves comparison of
outputs of mathematical models for various model
parameter settings.

In the work reported here (1), the
identification algorithm based on the 1least-
square identifiability concept (5,6,7) is
expressed in a new form, which is convenient for
engineering use in both characterizing system
models from test data and validating the models
themselves.

Actual s(t)
System

+ Error
- e(t,p)

Math. Model
with p

x(t,p)

BACKGROUND

The identification algorithm derived from
least square identifiability can be obtained by
using the minimum principle (optimal control
minimization technique) and the
quasilinearization technique (5:.6,7). This
iterative algorithm contains a linear algebraic
equation which determines uniqueness of the
identified parameters. In this development (1),
the matrix of the linear algebraic equation
relates model initial conditions, model
parameters, and adjoint system model response
error. The matrix can be separated into two
parts: a transition matrix and the so-called
observability Gramian (8,10). Observability
Gramian contains” ah Gbservability matrix and an
identifiability matrix. Earlier work in
identification algorithms (5,6,7) has studied
the parameter characterization (p) of linear
time-invariant systems:

Criterion
r—— =77
{Min.Jat {
J= fe2dt —i BestFit |
Parameter :

|
|
L e m = ——

Pigure 1: Least Square Identifiability

Class of Math.
Model

Criterion

Parameter p*

Parameter p

x (t,p)

Figure 2: Output Distinction Identifiability
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£(t) = A(p) x(t) + B(p) u(t) trangition matrix, the final conditions can be
", related to the initial conditions: that is, the
. x(ty) = x4 model's initial states and system's parameters.
. Hence, our two-point boundary problem is
‘ y(t) = C(p) x(t) (n transformed into a conventional initial value
b’ . problem. Moreover, linearization errors at each '
: p{t) = 0 iteration are evaluated by means of simple :
,‘ integration, and these errors are passed to the |
. pity) = p next iteration stage. |
o {
o4 The error difference in the time responses of an As Equations 3-1 through 3-4 are linearized !
actual system and its model equations (1) is with respect to the vectors x, p, w, and v, and !
3 called the performance index, J, and is first order variations on these vectors are .
. expressed: analyzed, it can be shown (7) that the '
transition matrix, T(t,ty) and the error vector, '
: t z(t), are governed by the following equations:
J = 172 [ 7 o(s(t)y - x(enT .
-: t, T(t.tg) = H (t) T(t,tp) (4)
Q (s(t) - x(&)) at (2) 2(8) = H(t) z(t) +h(t) 1
- 1
. In a least square sense, optimum parameters are = Ho (t) r(t) (5) .
R those that produce a local mirimum for J. }
' According to the minimum principle (8,9), the where
K necessary conditions for the extremum provide — —
the following equations: Tux 'l‘wp 0 1]
v % = 3H/3w = A(p)x + B(plu 0 1 0 0 '
0 T = .
o (= Hw) (3-1) Tyx 'I‘xp Tyw O
‘:. p = 3H/3v = 0 pr Tpp pr I_ .
o (= wv) (3-2) Z
w = -3H/3x = - aT(p) A(p) Hup 0 !
- I
- +cTp) O(s - y) (= -Hx)  (3-3) 0 0 0 !
- . Hy = T T !
v = -03H/3p -ceC  -H,  -AT(P) 1
% (= -p) (3-0) | Fox  Hpp o
= 3 (x"cT(pro(s - y))/3p
-l - 3 x"AT(pw) /3 p - A wTBT(pIWI/3p . i T
o X H z
: T W x
R = 1/2 (8 - x)° Q(8 - x)
- P 0 zp
+ wT (A(P)x + B(plu) + vT(0) r = h = z =
o w -H, z,
In Equations 3-1 through 3-4, vectors w and
. v become state vectors of an adjoint system for v -Hp z,
T the model. Initial and final conditions on w ] | L
and v are zero, whereas the model's initial and
S final conditions are unknown due to system test All initial conditions are zero except T(tg,,tg),
n limitations. which is the identity matrix.
e
] Because of the two-point boundary condition From the relation between the final
regarding w and v and nonlinearity of the conditions and the ini.ial conditions, the
(A system, it is impossible to obtain solutions by linear algebraic equations are obtained, which
- straightforward {ntegration. One way to solve iteratively provide the model's initial states,
:‘_- this problem is quasilinearization where Xqg» and the system parameters, p:
-;.' solution vectors at the N+l-th iteration stage
L are linearized around the N-th solution curves N -~ N+1
o (7,8). These equations become time-varying Tex(t1etg) Ty (tyeto) xg
H linear with regard to the N-th iteration so that
their solution curves can be expressed in terms Tpx“"l"'o) Tpp(tl,to) P
s, of a transition matrix. By using this
o,
o,
- 93
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2y (tl)
z, (ty)

The partitioned transition matrices and
error vectors appearing in the above equation
are computed based upon x; and p at the N-th
iteration as indicated by the superscript N;
improved x, and P for the N+l-th iteration are
produced by solving BEquation 6.

(6)

Based on zero derivatives of the
performance index as depicted in Pigure 3, the
identifier (identification algorithm), Bquations
4, 5, and 6, seeks the best-fit parameter by
iteratively adjusting the system parameter.
However, the zero derjvatives may occur at a
maximum value, at a saddle point value, or a
minimum value. As a result, the identifier may
not necessarily provide the best fit parameter,
as shown in a numerical experiment later.

From the standpoint of uniqueness of the
identified parameters, the algebraic equation,
Equation 6, plays a crucial role: when the non-
zero vectors and z, are given the necessary
and sufficient conditions for existence and
uniqueness of the identified parameters is non-
singularity of the square matrix of Equation 6.

NEW FORM OF IDENTIFIABILITY

Based upon Equation 4, an analytical
expression for the square matrix of Bquation 6
indicates that it can be separated into two

parts: the transition matrix and the Gramian
()

Actual s(t)

System
/

Math. Model
with p

C

x(t,p)

p

Transition Gramian 7
Matrix O, (t;,tg) is an indication of the
mathematical adequacy of a measurement system
used in test (8,10). This observability Gramian
is the second order partial derivative of the
performance index with respect to the state
initial condition x5, (1):

Opyltorty) = 3(33/3xp)/3xg

ataJ/axo = 0

Matrix O (tgr t1), can be regarded as the
identifiab¥lity  matrix,  which  provides
mathematical information about the uniqueness of
the identified parameter p, and also verifies a
local minimum (1):

Opp (tgrty) = 3(33/8p)/3p" > 0

at 3J/3p = O

This demonstrates that the response error of a
model in relationship to the actual system is
minimized.

To 4illustrate the role of matrix G

D’ the
following first order system is presenteg:

Newly added condition

P — e ———— —

a(aJ/dp)ap = 0pp>0 ;

|
|
L N R

Identifier

J= fezdt Based on

9J/dp=0

Pigure 3: Standard Identification Algorithm
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§(t) = -k p* (p* - a) s(t)

x(t) = -kp (p-a)x(t)

s(0) = so'.

In this example, k and a are known coefficients:
k = -0.5 and a = 3, 1f, for example, the true
values of p* and s,* are unity respectively,
minima of performance index J would occur at
P = 1.0 but also at 2.0 when x4 = 1.0 (Figure
5). It is possible that the {identification
algorithm (Bquations 4 - 6) would provide a
solution (p = 1.5 and x; = 1,058). ‘There, the
performance index is also a local maximum in
terms of p, and a local minimum with respect to
x, (a saddle point).

At all of the above points, the first
derivatives, 9J/9 p, are zero; 0__ is positive
(indicating a minimum) at (p = 1.0, xg= 1.0) and
{p » 2.0, Xg = 1.0). At the saddle point,
{p = 1.5, x5 = 1.058), which is not a minimum,
0 assumes a negative value, which indicates
tggt this point represents a minimum with
respect to x5, but a maximum with respect to p.

The standard identification algorithm of
{Bguation 4-6) provides three points which are
potential solutions; the value of separating out
the identification matrix, O is that the
correct solutions of this potenﬁal set of three
points can be clarified (Figure 3). This is
true because opp provides curvature information
identifying true minima (Figure 5).
Computational resulta are shown in Tables 1
through 3.

Class of Math.
Model

x(t,p*)
Parameter p* ry

Parameter p

x (t,p)

Error
e(t,p*p)

Whereas the identification matrix, O, is
employed@ as a verification tool for validﬁ:‘ay of
obtained solutions during identification
processes, there is another way of using H
that is, verification of a mathematical model's
identifiability. This can be done with a slight
modification in Figure 1, such as replacement of
8(t) by the same mathematical model with.
different parameters.

Output distinction identifiability,
conceptually depicted in Figure 2, can be
interpreted in terms of least square
identifiability, Figure 1, as J = 0 because
x(t,p*) = x(t,p) when p =p*, Uniqueness of
P = p* can also be interpreted as 3J/3p =0
and its positive curvature indicator,
9 (33/3p)/ 3P, since a value of J at p = p*
need be a minimum. As illustrated in Figure 4,
comparison of outputs of a wmodel's various
parameters can be made. By utilizing the
identification algorithm derived from the least-
square identifiability concept, verificiation of
a mathematical model's identifiability can be
performed numerically. For this purpose, a
mathematical assumption is necessary; that is,
that the iterative algorithm, Rjuations 4, 5,
and 6, gives converged solutions, and
subsequently that w(t) and v(t) are zero
(precise arguments are presented in (1)).

For illustrative purposes, identifiability
of the previous mathematical model at the point
(p = 1.5, Xo = 1.0) is examined. Evaluation of
o] at (p = 1.5, x5 =1.0) gives O = 0;
cggtour levels of O that of the pertggnance

’
index, J, and 3J/ 3ppgte shown in Pigures 6, 7,

and 8, respectively. As seen in the figures,
J=0 and 3J/3p =0 at (p = 1.5, xg = 1.0).

Criterion
s T
J=0
9 _
ap
N

ap dp Opp

>0

|
|
T

r
1
|
|
l
|

= o2 ‘ |
1
|

Pigure 4: Combined Identifiability
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However, because of O_ =0, one of the
identifiability requ!te-eneg is violated. This ;
indicates that if the parameter of the actual L.
system happens to take p* = 1.5, by implementing .
the mathematical model into the standard :
identification algorithm a nontrival solution t
during identification processes cannot be
obtained. A suggested alternative way is to
modify either the mathematical model or the
identification algorithm employing a second
variation effect, or both, if the actual
parameters occurs at p* = 1.5. :

e o e o

[ e i

This new identifiability matrix is a
substantial asset in characterizing systems in
relation to test and modeling strategies. Its
complete development is available in (1).
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STRUCTURAL ANALYSIS

MODEL EVALUATION OF SPINAL INJURY LIKELIHOOD FOR VARIOUS
EJECTION SYSTEM PARAMETER VARIATIONS

Eberhardt Privitzer
Air Force Aerospace Medical Research Laboratory
Wright-Patterson Air Force Base, Ohio

structure, is described.

system impact interactions.

response and injury likelihood.

The Air Force Aerospace Medical Research Laboratory's (AFAMRL) Head~
Spine Model (HSM), a discrete element model of the human head-spine
This model was developed to provide a mathe-
matical means for the investigation of three-dimensional head-spine
structure dynamic response and injury likelihood in impact environments
and to serve as a design tool for the evaluation of crewmember-ejection
Results are presented ‘rom a study which
involved the use of the HSM to evaluate the effects of variations in
certain ejection system parameters on head-spine structure ejection

INTRODUCTION

Human impact acceleration tolerance con-
siderations used in current ejection system
design practices are limited primarily to
system acceleration components paralleling the
spinal axis (i.e., +G, components). The
Cynamic Response Index (DRI) Model [1, 2],
which is based on a single degree of freedom,
mass-spring-dashpot representation of the head,
upper torso and lower spine, is the design
guide currently used to evaluate ejection
system catapult accelerations for military
aircraft. It has been extensively correlated
with ejection injury data and thus provides a
useful criterion for evaluating the lower spine
injury probabilities which might be associated
with proposed ejection system acceleration
profiles. The one-dimensional nature of the
DRI and similar models [3, 4], however, limits
their applicability to events in which the
nonaxial components of the spinal response are
negligible.

Increased performance capabilities and
operational requirements of recently developed
and proposed military aircraft have necessi-
tated considerable expansion of the safe
ejection envelope. The accomplishment of this
requires the development of a much more com-
prehensive, three-dimensional, functional
description of human ejection tolerance which
can address not only ejection system perfor-
mance parameters (acceleration profile) but
additional system parameters governed by, e.g.,
restraint system configuration, cockpit/seat
geometry and mission requirements also.

The Air Force Aerospace Medical Research
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Laboratory {AFAMRL) is currently developing
six-degree-of-freedom acceleration tolerance
criteria which bound seat transiational and
rotational acceleration levels [5]. These
criteria, which are based on data from ejection
and impact test experience, are required for
the digital flight controller which will "fly"
the next generation ejection seat. This system
is being developed by the Aerospace Medical
Division's Crew Escape Technology (CREST)
Office also located at AFAMRL [6, 7]. These
six-degree-of-freedom acceleration tolerance
criteria, although much needed, still do not
directly address other system variables affect-
ing human acceleration tolerance such as
restraint system configuration, cockpit/seat
geometry and head/helmet encumbering devices

or protective clothing which may be associated
with mission requirements. Some of these
variables, particularly restraint system
configurations, have been investigated
experimentally using human volunteers. These
experimental studies, however, are restricted
to noninjurious acceleration exposures and
affect ejection system designs as, primarily,
retrofit concepts (e.g., [Bg).

The three-dimensional description of human
acceleration tolerance referred to above, is
not attainable through any single avenue of
approach. Such a description, because of the
complexity and severity of ejection-system-
crewmember interactions, must be implemented
analytically and yet must evolve through exten-
sive experimental and ejection experience
considerations. This paper discusses the use
of a three-dimensional mathematical model of
the human head-spine structure to provide a
description of the effects of variations in
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several ejection system parameters on head-
spine ejection-induced dynamic response and
spinal injury 1ikelihood. This study, which
was requested by the CREST Office, was
specifically concerned with the effects of
varying the head-pad location relative to the
plane of the seatback and the catapult
acceleration vector an?le and magnitude. A
general description will first be provided for
the AFAMRL Head-Spine Model (HSM) followed by
the specific approach and results for this
study.

DESCRIPTION OF THE MATHEMATICAL MODEL

The HSM is a three-dimensional mathematical
model describing the mechanical behavior, in
terms of system kinematics and internal loads,
of the human head-spine-torso structure. Its
fully three-dimensional formulation is just one
of the features which signigicantly distin-
guishes it from earlier such models. The HSM
consists of two distinct components: a computer
program, SAM (Structural Analysis of Man), which
is actually a general purpose program for the
dynamic analysis of three-dimensional struc-
tures; and a data base containing inertial,
material, geometric and connectivity data
describing the head-spine-torso structure as
well as other data items, descriptive of the
specific problem and output to be generated,
required by SAM. The HSM has been described
previously in [9-13], hence, only a brief
description will be given here.

In the head-spine-torso structure, the
spinal elements, consisting of the seven
cervical (C1-C7), twelve thoracic (T1-T12) and
five lumbar (L1-L5) vertebrae plus associated
intervertebral discs and, to a lesser degree,
articular processes, constitute the primary
structural member for transmission of vertical
loads. At AFAMRL, we are particularly concerned
with dynamic compressive and bending loads
experienced by the spine during the ejection
event. A secondary loading path provides for
the transmission of viscera-abdominal wall
system pressures through the diaphragm to the
rib-cage-lung system and then to the spine
through the costo-vertebral and costo-transverse
joints [9, 12 and 14].

The development of the HSM required the
formulation of descriptions of local and global
spinal geometries, head and torso inertial dis-
tributions, the material behavior of the primary
spinal connective tissues and a measure of spi-
nal injury.

Geometry

Describing the local spinal geometries
amounts to the defining of the geometries of the
individual vertebrae. This is accomplished by
specifying the global, Xx, k = 1,2,3, coordi-
nates (a right-handed Cartesian system fixed
in space) of a number of points, called
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secondary nodes, which serve as the "attachment
points" of deformable elements and correspond
to the centroids of the attachments of the
connective tissues - the intervertebral discs,
articular facets and the spinal ligaments.

tach vertebra is contained in a rigid body
representing the inertial characteristics of a
segment or a portion of a segment of the torso.
A segment of the torso, corresponding to a
specific vertebral level, is defined as the
material bounded by parallel planes, perpen-
dicular to the vertical (Z or X3) axis and
passing through the centers of the inferior and
superior intervertebral discs, and by the torso
wall.

The initial overall static spinal configur-
ation is a function of the position of the body
(i.e., standing, sitting, etc.), the geometry
and material properties of external interaction
surfaces (e.g., an ejection seat back and seat
pan) and a number of physiological variables.
Fig. 1 shows frontal (X2X3 or YZ) and sagittal
(X1X3 or XZ) plane views of the HSM. Depicted
are only those components of the model whose
local geometries do not change. None of the
deformable elements representing the various
spinal connective tissues are shown. The
overall spinal geometry approximates that of a
50th percentile representative of the male
Air Force flying population seated upright in a
generic ejection seat (i.e., with the seatback
parallel to the Z axis).
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Fig. 1 - AFAMRL Head-Spine Model (HSM)
sagittal (X7X3 or XZ) and frontal
(X2x3 or VZ] plane views
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Inertial Distribution

The inertial description of the torso con-
sists of the specification, for each torso
segment, of the global coordinates of the
center of mass (called a primary node in the
model}; a "body" coordinate system, X, a
right-handed Cartesian system fixed on the body
and with unit vectors by, k = 1,2,3, coincident
with the principal axes of inertia; the
translational mass and the three principal
moments of inertia, Ix. The inertial proper-
ties of the torso segments were based directly
on the work of Liu and Hiikstrom [15]. The
global components of the (direction cosines
between the Xy and X axes§ arranged in the

matrix
b7 b2y b3
Dy = I8, By B3dp = [y, by by, m
P13 P23 B33 ||
define the transformations,
(A} = [A],(A} and (R} = [1](A) (2)

>
for any vector, A, with body and global compo-
nents A, and Ak, respectively. Since the Xy are
fixed in space and the (Xk); are fixed op rigid
body, 1, the updated components of the (By) or,
equivalently, [x]1, define the orientation of
body I with respect to the global axes [9].

The inertial descriptions of the head plus
helmet and encumbrances, the pelvis and any
other rigid bodies are defined similarly. Note
that the term “ri?id bodies" is used only to
indicate that their inertial properties remain
coastant relative to their body coordinate
systems, and that distances between a segment'’s
primary node and secondary nodes (sometimes
called rigid 1inks) remain constant.

Deformable Elements

The torso segments interact through defor-
mable elements (springs, beams, pressure-volume
and special-purpose elements described in
detail in [9and 12]) which represent the various
connective tissues: the intervertebral discs,
spinal ligaments and articular facets; the
primary musculature of the cervical spine; the
elastic properties of the viscera-abdominal wall
system; the costo-vertebral, costo-transverse
and costo-sternal joints and the intercondral
cartilage and intercostal tissues of the rib
cage [see also 14 and 17].

A local, or element, coordinate system,
Xk, a right-handed Cartesian system with unit
vectors e, k = 1,2,3, described as a rigid-
convected or corotational coordinate system

by Belytschko and Hsieh [16], is defined for
each element. In the case of a three-dimen-

sional beam element with nodes I and J, for

example, the element coordinate systeg, Zk, is
as follows: the origin is at node I; ey is
directed from I to J; the direction of &, is
determined from the average of the node I and
J rotations about %,; e, 1s obtained from the
vector product of &) and &2. The global com-
ponents of the €, (direction cosines between
the xy and X axes) arranged in the matrix

o e &1 €21 3
lg = Loy, ey 631 ey, ep) e, (3)
€13 €23 33 £
define the transformations
- . T
(A} = [u]p{A} and {A} = [u]ciA} (3)

for any vector R with element and global
components Ax and Ay respectively.

Transformations from element to body
coordinate systems and vice versa are given by

M = DITGIGAY and (R} = []] DA) (5)

respectively. In this example, the mass center
of rigid body I would be a primary node associ-
ated with element E.

A1l element deformation quantities, {d},
are defined with respect to the element coordi-
nate systems thus eliminating all rigid body
motion contributions. Element nodal force
computations are based on small strain theory
and, for the beam element, require that local
nodal rotations be sufficiently small such
that their decomposition into vectorial
components remains valid [9]. Note, however,
that overall displacements and rotations of the
deformable elements can be arbitrarily large.
Element nodal force (and moment) components are
normally computed from equilibrium equations
of the form

.=k, .d. +c,.d.
f1 kiq dJ c1J dJ (6)

Material nonlinearities are generally
introduced by defining the stiffness coefi-
cients, kjj, to be quadratic functions of
deformatioﬂ of the form

k

=k + k6, (7

ij 1
where k1 and kp are linear and cubic stiffness
coefficients respectively and & is a deformation
quantity. The damping coefficients are defined
as efther

c.. = 2e/MK. (8)

ij ij

where ¢ = specified fraction of
critical damping,
M= (ml + mJ)/Z




and my and my are nodal translational or rota-
tional masses; or

= ak (9)
stiffness proportional

damping parameter,
2¢/8

“ij ij

where a =

and B = specified system natural circular fre-
quency to be damped by an amount defined by ¢.

The most recent version of SAM also in-
cludes an exponential force-deformation rela-
tionship and a three-parameter viscoelastic
stress-strain law which are used to represent
the material behavior of the ligaments and
muscle elements, respectively, in a recently
developed, highly detailed three-dimensional
model of the head-cervical spine structure
(HCsM) [17, 18]. The experimental and analyti-
cal bases for the selection of the material
properties for the HSM deformable elements are
described in (9, 12, 19, 20 and 21].

External Environment

The mechanical environment external to the
HSM can be defined in terms of elastic planes,
spring elements, special-purpose restraint
system-torso interaction algorithms and the
specification of forces on and/or accelerations
of model primary nodes.

An ejection seat is defined by a system of
elastic planes. Interactions between the HSM
and a plane are defined by relationships simi-
lar to those expressed in Eqs. (6) through (9),
with d; and 6 in (6) and (7) both representing
the re{ative normal displacement of,a rigid
body with respect to the plane and éj in (6)
representing the relative normal velocity. A
force is applied to the primary node only if

d 0 and 3 <0,
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i.e., the rigid body has penetrated the plane
and is either moving into or is stationary
relative to the plane. The motion of a plane
is defined by specifying its acceleration
profile (which is internally integrated twice
to provide displacements) and the direction
cosines between the plane's acceleration
vector and the global axes.

A restraint system between the ejection
seat and the HSM is approximated in either of
two ways. The first, which is used most often,
consists of using spring elements between the
elastic planes and appropriate primary nodes in
the HSM. Rather than being directly attached
to and moving with a plane, the motion of the
attachment point of a restraint system spring
element is prescribed such that the resultant
force (nonzero only in tension) is always
normal to the plane. This approach to restraint
system modeling has been used with reasonable
success in a number of applications (see, e.g.,
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[22]) including the effort described in this
paper.

The second approach involves the specifi-
cation of a restraint system force time history;
the conversion of this into contact forces
acting on rigid bodies approximating the
geometry and inertial characteristics of the
shoulders; and the transmission of these contact
forces into resultant forces and moments acting
at the T1, T2 and T3 torso segment primary
nodes through beam elements approximating the
deformation characteristics between the shoul-
ders and the remainder of the upper torso [11].
This approach, which accounts for loss of
contact but neglects friction between the
restraint system components and the torso, has
been applied to the study of head-spine system
response to crewmember retraction [23, 24].

Numerical Integration of Equations of Motion

SAM uses an explicit numerical integration
scheme to solve for HSM kinematics. The
approach requires no matrix inversions since
all element nodal loads are computed at the
element level, i.e., with respect to the
element coordinate systems, x,. After the
element by element computations have determined
the element nodal loads, these are transformed
and assembled into an internal nodal force
array, FInt (defined in the X coordinates) and
an internal nodal moment array, Mint (the
components of which are defined in the various
X coordinate systems).

Global translational accelerations at time
step j+1 are then obtained by the direct solu-
tion of Newton's Second Law for each transla-
tional degree of freedom, i.e.,

1 _ pext _ cint
uip = (Fyp = Fip )/mg (10)
where i corresponds to the Xj degree of freedom
for primary node I, my is the translational mass
associated with node I, and
F??t = global components of the
prescribed external force
array.

The angular accelerations are obtained
from the Euler equations of motion written in
the body coordinates. Since these are coinci-
dent with the principal axes of inertia, all
products of inertia are zero and the angular
accelerations at time step j+1 are given by

=3+1 _ rpext _ gint s 7y = = 47

ay M M, (1, Iy) wymz]/Ix

=j+1 | rpext _ gint _ v _ 71y " C 97

ay [ﬂy My (Ix Iz) wwa]/Iy (1)
S cpext _pgint 1 3y == oo

o =M, h, (Iy I) “x“y]/lz

where an additional subscript, say J, identify-
ing the primary node has been omitted for
convenience:
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X, Y and Z refer to body coordinates Xy for body
(primary node)_J; w,, wy and &, are the angular
velocities in_X; compor:nts computed during

time step j; I., Iy and I, are the principal
moments of fnertia with respect to the ik Sys-
tem; and

ﬁ:xt and ﬁ;"t = external and internal

moments about the origin of the Xy system for
body J.

Once the accelerations have been deter-
mined, the velocities (translational and
angular) are updated using an equation based on
a central-difference expression for the
acceleration at the midpoint of the integra-
tion interval, i.e.,

T IS IR C R T I
ujp + 5 Uy uyy)

Yi1
and (12)

G4 i L at (0t 4 ol
R T S TR T

where at = integration time step.

Displacements are updated using a three-
term (i.e. up to and including the second
derivative) Taylor's Series expansion on the
previous time step displacements, i.e.,

v o_ . j ALZ"J . N
ujp Ty At g ¢ SRy (13;

Updating the orientation of, for example,
rigid body I requires that the global compo-
nents {i.e., direction cosines) of its unit
vectors, by, be updated. The formulation for
this process begins with a three-term Taylor's
Series expansion on the bid similar to Eq. (13)
and proceeds with the substitutions of vector
products, involving angular accelerations and
velocities and the by, for the time deriva-
tives of the unit vectors. This formulation
is discussed in detail by Belytschko et al. in

[9].

Unlike an impiicit numerical integration
scheme which has, essentially, unrestricted
numerical stability (albeit at the potentially
large expense of matrix inversion and iteration
requirements), an explicit scheme such as out-
lined above requires the selection of an inte-

ration step which will insure a stable solution
EZS]. The stability Timit, atg, or maximum
allowable integration time step, for SAM is
determined by selecting the element in the
model having the highest natural frequency and
equating the solution propagation speed, Vs,
and the wave speed, c, for this element. This
results in

Ats = % ’ (‘4)

where 8 = 22/T is the natural circular frequency
for free vibration of the element and T the
natural period. Hence,

Al

Ats = . (15)

In practice, the actual integration time step
used is less than ats.

Spinal Injury Prediction

The HSM has a spinal injury prediction
capability called SIF (Spinal Injury Function)
which addresses the predominant spinal injury
mode associated with aircrewmember ejection;
vertebral body compressive fracture resulting
from combined axial compression and bending
loads. The SIF provides an indication of the
likelihood of vertebral body compressive yield-
ing associated with axial compression and
bending (anterior-posterior (AP) or lateral (L))
toads computed at each vertebral level of the
thoracolumbar (TL) spine during a simulation.
It is computed from

M M max

P AP L

SIF, = I— + max || » ‘—; (16)
v Py MAPl ML (v

where V = vertebral level; P, MA and M, = com-
puted instantaneous equilibrium values of the
compressive load and the lccal AP and lateral

bending moments, respectively; and Py, M3p and
M[ arg the cor;esponding yieid valugs. APy
Y

The Py are based on axial compression load-
deformation data (to failure) obtained by [26]
(as reported by [27]) and [28]. No cerrespgnd-
ing data for AP and L bending were found. Map,
and ME were, therefore, generated by treating
each vertebral body as an elliptical cylinder
with midheight major and minor radii. a and b
and the assumption of a homogeneous distribution
of material with mechanical properties iaterme-
diate to those of the vertebral hody core (tra-
becular bone) and shell (cortical bone). The
effective yield stress for this material is

then given by

+ By (7

where A = midheight cross-sectional area = mab.
Using the flexure formula from strength of
materials, the bending moment which produces

a stress oy, in the extreme fibers at the mid-
height of Such an elliptical vertebral body can
be related to Py by

I I
AP L
* *
MAPy = EA— Py and MLy = K Py (18)

for AP and lateral bending, respectively. In
equation (18) IAP and I, are the second moments
of A about the major, 2a, and minor, 2b, dia-
meters, respectively, Since

2 2
= 2% and 1 =%A, (19)

lap * 3 L
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Eqs (18) take on the rather simple form,

b *
M* =2p and M =
L
APy 3y y

a
" Py (20)

where a and b are based on [28, 29].

The SIF, as given by Eq. (16), represents
a ratio of computed gquantities to specified
yield quantities. .A value of SIF=1 at any
vertebral level, V, is therefore taken to
correspond to a 50% likelihood of compressive
yielding due to combined axial compression
and bending at that level. The 1ikelihoods or
probabilities associated with values of SIF ¢ 1
are obviously dependent upon the chosen
distribution function. For example, Payne [27]
reports probability distribution functions,
for vertebral compressive failing loads norma-
lized to L5, based on both Normal and Gamma
probability densities. Applying his Normal
distribution function to the SIF we find, for
example, that SIF values of 0.9 and 1.1 would
correspond to 16% and 84% probabilities,
respectively, while 10% and 90% probabilities
would correspond to SIF values of 0.87 and 1.13
respectively. We have, however, not yet estab-
lished the validity of applying a probability
distribution function for vertebral failing
loads based on axial compression experiments
to the SIF which addresses vertebral body
yielding due to combined axial compression
and bending loads. Hence, although it is
stated above that the SIF provides an indica-
tion of the likelihood of yielding, the only
SIF value to which we currently actually assign
a probability (i.e., 50%) is SIF=1.

Several different versions of varying
complexity (i.e., number of degrees of freedom),
of the HSM exist. These range from the SSM
(Simplified Spine Model)}, having 48 degrees of
freedom, to the CSM (Complex Spine Model), with
252 degrees of freedom. These differences in
degrees of freedom translate into significant
differences in computer time for similar
simulations. A CSM simulation requires almost
two orders of magnitude times the computer time
of a similar SSM simulation. The level of
detail (i.e., number and locations of response
variables) desired determines which version of
the HSM is used for a particular application.
The system component(s) (usually the TL spine)
whose response is of primary concern is modeled
in detail, while the remaining components are
approximated with only the degree of discreti-
zation necessary such that their contributions
to the overall response of the model and their
effects on the response of the primary compo-
nent are reasonable (as determined by earlier
studies comparing responses of different ver-
sions of the HSM [11, 12]).

HSM validation is an ongoing program at
AFAMRL and involves comparisons of model
predictions with data obtained from experimen-
tal programs and from reconstructions of
operational ejections [11, 12, 30 and 31].

Validation of the HSM dynamic response and
spinal injury prediction capability (i.e., SIF
and the associated yield criteria) is scheduled
%gabe completed by the end of calendar year

6.

APPROACH

The Aerospace Medical Division's CREST
Program Office requested that the HSM be used
to evaluate the effects, on head-spine struc-
ture ejection-induced dynamic response and
injury likelihood, of variations in the
following ejection system parameters: head-pad
Tocation relative to the plane of the seatback,
A, and catapult acceleration vector angle, a,
and magnitude, a(t). The ranges for the varia-
tions of these parameters were also specified.
Values requested for A were -2.54, 0 and +2.54
cm, where negative, zero and positive A indi-
cate the front (+X) surface of the head-pad
is aft, even and forwards, respectively, of the
front surface of the seatback (for the remain-
der of this paper, X, Y and Z are used to
identify the global axes with X, Y, and Z posi-
tive forwards, to the left, and up, respective-
1y). Values specified for a were -10°, -5°, 0,
+5° and +10° where a is measured from the Z
axis (in the XZ plane) and negative, zero and
positive values of a indicate that the X
component of the catapult acceleration vector
is negative, zero or positive, respectively.
Two acceleration levels, which will be referred
to as aj{t) and a(t), were considered. Both
were parabolic approximations to the first 150
msec of an ACES II catapult acceleration time
history, i.e.

> > >
a;(t) = Aifcz:(sinai + cosaj), ost<.15sec (21)
.15

where Aj, the 150 msec (and peak) magnitude

of 3j(t) were specified to be 12 and 18 G
(11,768 and 17,652 cm/sec2) for ay(t) and ap(t)
respectively. In the remainder o} this paper,
the vector symbol (+) is omitted when aj(t) or
a2(t) refer to acceleration level or magnitude.

For the HSM simulations, the 3;(t) were
prescribed directly at the pelvis primary node
and on a single elastic plane representing the
seatback. Hence the pelvis and seatback moved
together. A restraint system was defined using
three spring elements between the seatback
plane and the primary nodes of the T1, T2 and
T3 torso segments. The motions of the seatback
"attachment points" of these spring elements
were constrained such that their Z displacements
were identical (to within a time step) to those
of their corresponding torso segment primary
nodes, thus assuring that the tensile forces
developed in the springs were always normal to
the seatback.

Of primary interest in this study were the
effects of the aforementioned parameter varia-
tions on TL spine injury likelihood as deter-
mined by the SIF. The version of the HSM used
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in this study was, therefore, one in which the
TL spine is modeled in detail while simplified
approximations are used for the remaining
subsystems. Fig. 2 depicts the sagittal (XZ)
and frontal (YZ) plane views of this model and &
again defines the ejection system parameters
which were evaluated. This HSM contains a fully
discretized representation of the TL spine,
i.e., each vertebral level and the interconnec-
ting intervertebral discs, spinal ligaments and
articular facets are included. The head/helmet
and pelvis are modeled as rigid bodies, the
cervical spine as a single three-dimensional
beam element and the secondary loading and
stiffening effects of the viscera-abdominal
wall-diaphragm-rib-cage system are accounted for
with a column of nonlinear beam elements which
approximately parallels the primary column.
These nonlinear beam elements, whose only non-
zero stiffnesses are cubic stiffness coeffi-
cients for local AP and lateral bending deforma-
tions, interconnect the primary nodes directly
and provide resistance to large relative rota-
tions only.

RESULTS AND DISCUSSION

Each of Figs. 3a, b and c shows the effects
of variations in o (-10° < o £ +10°); with & =
constant (-2.54, 0 and +2.54 cm for.Figs. 3a, b
and ¢ respectiveiy} and for the 12 G accelera-
tion profile (a;(t)), on TL spine injury likeli-
hood as determined by the HSM SIF (Eq. 16).
Results for a = -5° and +5° were not included
since these turned out to be intermediate to
those which were plotted. The SIF are plotted
as functions of TL spine vertebral lev.! [T

AT
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a6l
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2 15
ol2t+
<
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zZg a, (1= II.768/_T_ cm/sec?
Ei 6 A5
G a
@2
Q
ol L L1 1 1

.02.04.06.08.10.12 .14 .16

TIME (sec)
(b)

study and definition of parameters
to ACES II catapult acceleration time history

through L5).

It can be seen, in all three figures, that
increasingly negative values of a (correspond-
ing to increasing -X components of ay(t)) have
the primary effect of increasing SIF in the mid-
to-upper thoracic spine with the magnitude of
this increase and the number of affected verte-
bral levels also becoming larger with increas-
ingly positive values of 4. Also noteworthy
is that in going from a = +10° to o« = -10°, the
maximum value of SIF shifts from the mid-lumbar
spine to the mid-thoracic spine (obviously true
for o = 0 and +2.54 cm; not quite the case for
& = -2.54 cm but the trend is there).

Mechanical insight into the reasons for
these changes in SIF can be gained by plotting
the axial ?P/Py) and bending (M/My) contribu-
tions to SIF versus vertebral level. This has
been done in Fig. 4 for the SIFs of Fig. 3b,
i.e., for 4 = 0. It is immediately apparent
that the increase in upper thoracic SIF is pri-
marily attributable to increased bending,
specifically, flexion (forward bending) in the
upper thoracic spine. It is also apparent that
the bending response in the lower thoracic and
lumbar spine is not significantly affected (with
the exception of T12) and that the SIF changes
in these regions, though for the most part
small, are directly attributable to the axial
response. In fact, the SIF and its axial
contributions are seen to decrease in these
regions.

Fig. 5 depicts HSM sagittal (XZ) plane con-
figurations at 25, 75, 100, 125 and 150 msec for
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(a) o = +10°, (b) o« = 0 and (¢) a = ~10° (with
A = 0 and ay(t)), i.e., the three cases corres-
ponding to lhe SIF and P/Py and M/M_ plots in
Figs. 3b and 4, respectively. It i¥ readily
apparent from these configurations, that as a
decreases, or becomes increasingly more nega-
tive, the tendency for a (t) to induce a posi-
tive rotation of the heaa and upper torso about
Y {(positive rotation of the head and upper
torso flexion is somewhat limited by the res-
traint system but the forward translation and
rotation of the head is limited only by the
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the cervical spine and its associated muscles
and ligaments) The increase in the magnitude
of this head motion with increasingly negative

a s the primary source of the increased for-
ward bending of the mid-to-upper thoracic spine
while at the same time resulting in a decrease
in the inertial axial compressive loading of the
lumbar and lower thoracic spine (obviously the
corresponding decrease in the +Z component of
ayj(t) also contributes to the decrease in the

axial compression of the lower spine).
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Each of Figs. 6a, b and c shows the effects
of variations in & (-2.54 < 4 < +2.54 cm); with
a = constant (-10°, 0 and +10° for Figs. 6a, b
and ¢ respectively) and for the 12 G accelera-
tion profile, on the HSM SIF. In all three
figures, it can be seen that increasingly larger
values of A with a constant produce similar
variations in SIF as increasingly negative
values of a, 1.e., increases in mid-to-upper
thoracic region SIF and a change in the location
of the maximum of SIF from the mid lumbar to
the mid-to-upper thoracic spine. Fig. 7 shows
plots of the axial (P/P,) and bending M/My)
contributions for the SYFs of Fig. 6b. Again
it is apparent that the SIF increases in the
mid-to-upper thoracic spine are directly attri-
butable to increased bending in this region.

Fig. 8 depicts HSM sagittal (XZ) plane
configurations at 25, 75, 100, 125 and 150 msec
for {(a) & = -2.54 cm, (b) 4 = 0 and (c) & =
+2.54 cm (with a = 0 and ay(t)), i.e. the three
cases corresponding to the SIF and P/P_ and
M/My plots in Figs. 6b and 7, respectiyely. It
is apparent that as A increases, the tendency
for a;(t) to induce a positive Y rotation of the
head and upper torso increases. Comparisons of
Figs. 6b, 7 and 8 with Figs. 3b, 4 and 5,
respectively, clearly show that increasing 4
{from -2.54 cm to +2.54 cm with o = 0) and
decreasing a (from +10° to -10° with A = 0)
produce quite similar chanees in both head-spine
structure kinematics and TL spine injury likeli-
hood. This is not particularly surprising since
decreasing A and increasing a both have the
effect of decreasing the +Y angular acceleration
of the overall center of mass ?gM) (or, equiva-
lently, increasing the magnitude of the -Y angu-
lar acceleration of the CM) while, conversely,
increasing & and decreasing a both have the
effect of increasing the +Y angular acceleration
of the CM (or equivalently decreasing the magni-
tude of the -Y angular acceleration of the CM).

Fig. 9 compares the SIF for the 12 G (a1(t))
and 18 g (a (t)g acceleration profiles for the
case a = 0 {i.e., ¥;(t) and 3,(t) are both
straight up) and 8 = 0 (i.e., head-pad even with
seatback). There is a fairly uniform increase,
having an average value of 36%, in SIF for T
through L5. Fig. 10 compares the HSM configura-
tions from these two simulations. Kinematics
for the two cases are qualitatively quite simi-
lar, with the 18 G profile obviously resulting
in somewhat larger deformations.

Fig. 11 shows the SIF for three different
combinations of a and A (and the 18 G profile
in all three cases). The most severe case
shown is obviously a = -5° and & = +2.54 cm,
which turned out to be the most severe combina-
tion of these parameters considered in the study
(the combination, a =-10°, & = +2.54 cm and a,(t)
was not considered). For this case the SIF was
greater than 1.0 (corresponding to 50% 1ikeli-
hood of vertebral body -ompressive yielding) for
three vertebral levels, T3, T4 and T5, with the
maximum occurring at T4,

109

oy VAT WORTY LY . IR 4 -3 T e i P A Lt Sul s Al et

It is also of interest to compare the SIF
for a = -10°, A = +2.54 c¢m and a,(t) in Fig. 6
to that for a = 0, A = 0 and az(l) in Fig. 9.
Even though the first curve is based on an ac-
celeration level 33-1/3% less than that of the
second, the mid-to-upper thoracic spine (75-T1)
SIF is slightly higher for the first. The
difference would be even more significant if
the SIF for a = -10°, & = +2.54 cm and a,(t)
were compared to any for a > 0 and/or 4 < 0
and aj(t). It is apparent then that certain
combinations of a and 4 (primarily a < 0 and
4 > 0) may have at least as significant an
effect on human ejection acceleration toler-
ance, as indicated by the SIF, as small
variations about a system's design acceleration
profile.

CONCLUSION

The Air Force Aerospace Medical Research
Laboratory's Head-Spine Model (HSM) and its
structural analysis software, SAM, have been
described along with the application of the
HSM to a problem in ejection system design.
This problem was the qualitative evaluation of
the effects of variations in & (head-pad lo-
cation relative to the plane of the seat-back),
a (catapult acceleration vector angle) and a(t)
(catapult acceleration vector magnitude) on
ejection-induced TL spine injury 1ikelihood.
Ranges for the parameter variations were
specified and are representative of these
parameters in existing ejection systems.

Results from the HSM ejection simulations
were presented in the form of SIF plots versus
TL spine vertebral levels and model sagittal
(XZ) plane configurations. These results
demonstrated that variatfons in a from +10°
to -10° (with A constant) and a4 from -2.54 to
+2.54 cm {with a constant) had similar effects
on the SIF. Both sets of parameter variations
(in the directions indicated) resulted in
increases in mid-to-upper thoracic spine SIF
and a change in location of the maximum value
of the SIF from the mid-lumbar to the mid-
thoracic spine. It was also demonstrated that
the increases in mid-to-upper thoracic spine
SIF were directly attributable to increased
forward bending in this region and that the
axial compression contributions to the SIF
were considerably less affected. These obser-
vations hold for both acceleration levels.

Using the HSM, we have shown that ejection
system geometric parameters, such as a and 4,
may have as significant effect on human ejec-
tion acceleration tolerance as the accelera-
tion profile itself. None of the one-dimen-
sional types of head-spine structure models
(such as the DRI) which preceded the HSM, could
have provided the type of quantitative {(nor
qualitative) results upon which this statement
is based. The results presented here lead to
the conclusfon that limitations must be placed
on a (for a < 0) and A (for & > 0) to insure
minimum TL spine injury 1ikelihood during the
catapult acceleration phase of the ejection
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sequence. In a follow-on effort, we plan to injury likelihood for both a generic (such as
determine the optimum combinations of a, 4 and used in the study presented herein) and
acceleration level that will minimize TL spine specific ejection systems.
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DISCUSSION

springs have had cubic stiffness terms, but most
elements are linear. But, from the geometry, it

Mr. Robbins (University of Michigan): I noticed 18 a large deformation problem, It is a small
in both the movies you presented, and in some of strain problem, but it is also a large

the earlier slides, the pelvis orientation was displacement problem. So, you will have some
shown fixed, and there was an S curvature nonlinear effects from that, I have done that
particularly evident in the lumbar spine. What problem, and it 18 a nonlinear type of behavior,
data base did you use to determine there should

be that much S curvature in a spine which Mr. Helfrich: Which portions tend to get worse?

represents a seated posture?
Mr. Privitzer: It gets worse in the upper

Mr. Privitzer: The pelvis is fixed because we thorastic spine first because of the bending; we
are driving the pelvis directly. also have more problems up there because of the

difficulty in modeling the restraint system.
Mr. Robbins: I am talking about the orientation
of the pelvis, not that it was {ixed.

Mr, Privitzer: I am not sure of the official
name of the data base, but it is supposedly
based on some x-ray data of seated pilots that
were gathered in the early 1970°s. 1 aa not
sure vhat they were seated in, though; it might
have been in a gseat with a lumbar pad. But,
that 18 just one particular configuration; we
can modify that configuration according to
vhatever situation we are dealing with,

Mr, Robbins: Have you modified the pelvic
orientation to take the S out of the bottom in
any of your simulations?

Mr. Privitzer: No. I have not. 1 have let it
rotate., But, most of the time, we do not know
enough about whatever is going on beneath the
pelvis to let the pelvis respond. So, I usually
put my input right at the pelvis,

Mr.Robbins: I guess my main concern was the
spinal curvature. I would think that would be
an important variable; whether you have an § or
more of a straight column. It seems like it
would have a lot of effect on the inner
vertebral disce and in the injury function.

Mr. Privitzer: Yes. 1If we are addressing a
specific ejection system, then ideally we would
want to model the spinal curvature as it would
be on the mean in that system. The only
question is how we will get that data because
you would have to x-ray people to get it, and
you are not supposed to do that.

Mr. Robbins: 1Is the crest seat design fixed so
you will have to use this function?

Mr. Privitzer: No.

Mr. Helfrich (Pacific Missile Test Center): You
showed the two curves from the Al and the A2 in
the spinal injury function curve, and they were
fairly constant., Do you think that is a linear
function? If you went up to &nother g level
would you expect the same thing, or do you think
that would end up being nonlinear?

Mr, Privitzer: It will not be linear. The beam
elements 1 used in this study are linear; I did
not use a cubic stiffness in that, Some of the
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TIME DOMAIN MATHEMATICAL MODELING OF ELASTIC N
INSTABILITIES AND LARGE ELASTIC-PLASTIC o"
DEFLECTIONS .
Robert P. Brooks s
Franklin Research Center =
Philadelphia, Pennsylvania "
N Mathematical modeling and computational techniques, based on an explicit -
y time integration scheme, are presented for the calculation of elastic -
- instabilities and large elastic-plastic deflections of beam elements. The y
equations are formulated to facilitate their introduction into time-domain 7 9
computer programs. £
: The simple models presented, demonstrate the phenomena of Euler, angle and -3
. lateral buckling, as well as plastic-buckling with strain-rate effects. N
. This methodology can be implemented to analyze complex structures, -
r,- consisting of members that may exhibit failure instability when subjected ~
i to large, short-duration loads. 3
%
-, L
i LIST OF SYMBOLS INTRODUCTION o
.: A - Area The purpose of this paper is to present ‘o
. Ag - Shear area dynamic mathematical models of beam elements K
. D - Length between adjacent mass centers that respond correctly to buckling loads and
-~ of corresponding points on adjacent exhibit large plastic deformations. The
- masses models are in the form of readily programmable :
> E - Modulus of elasticity logic, which the analyst can include in his or <
5 G - Shear modulus her own software., These models are aimed at "
j I - Inertia (area or mass) predicting catastrophic failure in the time .
3 J - Polar moment of inertia domain instead of detailed stress distribution. K
" K - Spring constant -
<y k - Torsional rigidity Five mathematical modeling schemes are L
L - Length (axial direction) presented in this paper. The first three
M- Moment models are for (1) Euler buckling, (2) o)
m - Mass buckling of angles and (3) lateral buckling. .
. P - Axial load When using these models, the analyst must know ‘.
T - Torsion the failure mechanism. The fourth is a
o t - Time general wuucl embodying all three buckling .
> v - Shear force modes. The last model is an extension of the 5
i X - Coordinate axis or motion fourth one witrr added logic to approximate
= Yy - Coordinate axis or motion yielding and strain rate effects.
L - Coordinate axis or motion A
- x - Rotation about the X-axis The primary use for these models is to .
. A - Rotation about the Y-axis analyze compression members subjected to
X T - Rotation about the Z-axis targe, short duration loads such as in shock -
o loading. Analysis using these models .
N Subscripts demonstrates that the structural elements can 3
withstand short duration loads which have a ;
c - Compression/tension spring peak greater than static critical buckling
~ m - Mass load. In such cases costly and time consuming K
- S -  Shear spring redesign can be avoided. -
N L Direction .
:. A . Direction Another helpful application of these .
.. T - Direction models is in the analysis of the failure of .
o submarine hulls subjected to underwater -
- A1l other symbols are described in the text as explosions. One proposed theory of failure is N
- they appear. that the web of the ring stiffener may
"cripple” (buckle) when the submarine is .
d’- '.
g .
'
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subjected to an underwater explosion. This
failure mode is within the capability of these
models.

BASIC BEAM MODEL

The modeling schemes presented in this
paper are all variations of the beam model
described in [1]. For that reason a brief
review of that model is in order,

Timoshenko's theory of beam bending
supplies the following basic equations:

meerdleo (1A)
V-has dL-g)=0 (18)
%Q--vux%%o (1C)
%‘Li-- PA{—I;-—- 0 (10)

The first two equations relate loading to
movement. Equation (1A) expresses the
relationship between internal bending moment
(M) and relative cross-sectional rotation
(3¥.~9L). Equation (1B) stipulates the
relationship between the vertical shear force
on a beam cross-section (V), and the shear
angle (3y/oL-¥).

The latter two equations relate
accelerations to the loading. Equation (1C)
defipnes the effect of rotary inertia
(P132%/3t2) developed by considering
rotational motion of beam elements during
vibration. Equation (1D) considers
translation motion of the beam elements.

The axial and torsional loading of a rod
gives the following equations:

F-aedd-o (1E)
T+ xe?‘—fﬂ 0 (1F)
1
AE-radE -0 (16)
' 8
4L-rlx -0 ()

Equation (1E) relates the axial force (F) to
the relative axial motion (3X/3L). Torsion

(T) is a function of rotation about the axis
of the rod (9%/3L) as shown in Equation (1F).

The last two equations relate loading and
acceleration. Equation (1G) give the axial
motion (32X/at2) based on axial load.

Equation (1H) describes how the rotational
acceleration relates to the torsional loading.
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fig.1 - Basic beam model

From consideration of Figure (1), the
finite different form of the equation set is

M ’%I‘L"'(‘Yi -8¥i41) (2A)
AsG -
e RS (o - an vaL(ar, ean)a) )

6= (—AL(VH V) aem .y ~n;) /AL F1 (2C)

Yor (V, - V_g)/PAM (20)
F= A0 (8%, ™ AX,) (2€)
Ti= AL (A% -A%,,) (2)
X.=(F-F.1 )/PAAL (26)
oC = (T,_y -~ ¥;)/PTAL (2H)

Equations (2A), (2B}, (2E) and (2F) now
form the static set, and equations (2C), (2D),
(2G) and (2H) the dynamic set. The integration
scheme which is aplied to each mass in the
model, in readily programmable form is:

time = t +At

ACCy = (forces or moments)/ '

(mass or inertia) o

Dynamic :
equation VEL; = VEL; + ACC; (at) v
loop 5
DISP; = DISP; + VEL; (at) “

Static .
equation LOAD; = K(DISP; - DISP;_7)
Toop &
l

X

o

N

. oy~ -
a2v% %,
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S The dynamic and static program loops are Model r
:- typical of the sets for each degree-of-freedom e
N considered in a model. If all six The dynamic model, Figure 3, which has y
degrees-of-freedom are included, then three been developed for buckling response to
translational and three rotational compressive loads is derived from the beam =
» accelerations are calculated and integrated model in the previous section. In this model -
N (as above) to obtain displacements. For six the tension/compression spring need not be .
: degrees-of-freedom, the static set contains parallel to the X-axis. Thus, if the internal o
< six equations, corresponding to six loads: compressive forces are great enough, the shear X
- three moments and three forces. At the and moment springs may not be able to balance 5
) conclusion of the static equation loop all the the Y component and buckling would result.
calculations for the time increment are
completed. Time is then updated and the
K process repeated, until the desired simulation
2 time, or other criteria is reached.
g EULER BUCKLING
: Description -
Column or Euler buckling is probably the b
simplest and best known form of elastic .
. instability. This type of failure occurs when -
- the compressive loads on a column are great <
enough that external moment (Ms), See Figure NOTES: Q. SHEAR SPRINGS ARE y
: 2, ASSUMED TO ACT IN THEIR . g
ORIGINAL DIRECTION.
Mo =P (§-7Y) b. SIGN CONVENTION-

. 1. COMPRESSION 1S CONSIDERED A -
cannot be compensated for by the internal POSITIVE FORCE IN THE SPRINGS. -
moment LIF y(I) 1S POSITIVE IT CREATES A POSITIVE .
) rY MOMENT IN THE (I} MOMENT SPRING AND A .

Mj = EI YL NEGATIVE MOMENT (N THE (I-1) MOMENT SPRING. -
A The problem was originally solved for static -
" loads by Leonhard Euler in 1744, hence the . .
common name of the phenomena. Fig.3 - Beam model for column buckling
P The equations and logic for the model of :
| Figure 3 are as follows:
8 I The load equations, which are calculated .
each time increment for every set of i
l springs in the model are: .
l AX = Xj - Xj+] +AL
- INERTER N
) 0= /@2 + (ar)2 N
Fi = Kc AL-D) A
- FX; = Fi AXAL ;
o FYj = F; AYAL -
;-'; Vi = Kg(Yie1 - Y + BL/2)(¥5 +T547)) .
f: FIi = Ky (T4 - Ti47) R
7. where, AL = original mass spacing, »

Fig.2 - Column buckling Kc = AEAAL,

;
R ¢
: 119 2
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Ks = ASGAL,
Ky = IEAL,

and, coordinate positions are measured
from the original unstressed positions.

The corresponding acceleration equations
are:

X{ = (FX§ - FXja7)/m
Yi= (V§-Viey+FYy-F¥eq)/m

¥i = (Fyey - FI4
- 12)(FS§ + FS441) M1

The accelerations are numerically
integrated twice to obtain the necessary
displacements.

Verification

To verify the derived model, a free-free
beam subjected to a constant compressive load
was chosen as a test problem. The beam is
198.12 cm (78 in) in length with 5.08 cm
(2 in) by 5.08 cm (2 in) cross section. Since
this mathematical beam was perfect, it was
necessary to perturbate one of the masses to
start the dynamic simulation.

Figure 4 shows the maximum displacement
of the oscillation of the center mass in the
Y-direction as a function of compressive
load. Figure 5 depicts the frequency
exhibited by the model versus compressive
force compared with the exact solution. The
model shows very good agreement with theory,
(2]. The simulation with p = 315,790 n
(75,000 LB) was stopped at time = 0.0834
seconds. At that time the rate of center
deflection was still increasing.

This type of model should be used if
column buckling is suspected as a possibility,
because it does not force buckling. The model
will buckle only if the load is above critical
and is of sufficient duration,

BUCKL ING OF ANGLES

Description

If an angle section is compressed as
shown in Figure 6, it may fail in two
different ways:

1. if the width (W) is relatively
small, it will buckle as a column;

2. if W is large, the flanges will
buckle.

The flange buckling mode is similar to the
buckling of a plate hinged on three sides.

fr
Es

CENTER WL:CTM (N)

3

ot FROON) g

(1000 LBS)

Fig.4 - Peak dynamic displacement of
the center mass as a function
of compressive load

Fig.5 - Beam frequency as a function
of compressive load
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Fig.6 - Compression of angle section

Model

Though angle buckling has two failure
modes and one of them is plate buckling, the
problem is solved here by employing two beam
models coupled along their length..

Figure 7 depicts a portion of the madel.
Each beam in the model appears similar to the
previous buckling model (a tension/compression
spring that may not remain axial, a torsion
spring, two shear springs, and two moment
springs between the mass faces). However,
there is one important difference which allows
for the torsional component of the axial
stress. This phenomenon is shown and derived
in Figure 8. When the equation on Figure 8 is
added to the model, the flange buckling mode
is included.

Fig.7 - Local buckling model

-7,
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Fig.8 ~ Derivation of torsional
component of axial stress
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Fig.9 - Buckling of angle section

Verification

Timoshenko's work on elastic stability
{23 includes a graph of the buckling strength
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of an angle as a function of flange width.

Model
This graph is reproduced in Figure 9 and

compared with the results of the dynamic angle The springs which are necessary to allow
buckling model. Since only static results the lateral buckling of the beam are shown in .
were found, this model is not correlated in Figure 11a. Note that an axial spring is not
the frequency domain. The loading of this included. For the previous problems it was
X model is the same as in the previous section. necessary to calculate the components of the N
X That is, a constant compressive load is axial spring. For this problem it is \
applied to the model and a small perturbation necessary to calculate the components of the i
- is applied to one of the masses. If the model two moment springs and include them in the !
: oscillates there is no buckling and the load proper rotational acceleration equations. ‘
o is increased for the next simulation. This is This scheme allows the applied load to excite
repeated until the model starts to collapse the lateral bending and torsional motions of
instead of oscillating. Again, the model the model masses.
. results show very good correlation to theory Y

and experimental results. B8

BEAM IN PURE BENDING

Description

Figure 10a depicts a narrow rectangular R
beam subjected to pure bending about Z-axis. ]
. As the bending moment increases the beam bends
) in the lateral direction and twists as
) illustrated in Figures 10b and 10c. When the
external moment, Mg, becomes large, the d
~ torsional and lateral rigidities of the beam
i cannot compensate for small components of M,
about X and Y axes resulting in buckling.

J3—

Fig.11 - Lateral buckling model .

The following two equation sets are '
defined for the model., Figures 11b and 11c
indicate the positive direction of the angle ¢ &
and 8 used in the equation sets.

Load Equations
: $5 = TANT((Y] - Yie1)A0L)
g Xo 6 4 = TANT((Z5 - Zja1)AAL)

o v . -
o et

. ¥

§ b stcrion Shear force in the Y-direction -
: ¢ Vi Ke(Yien - Yo+ @U2) (65 + Vi) :
" Shear force in the Z-direction A
‘ VZj = Ks (Zis) - 24 - BL2)B; +Bi)) R
B Fig.10 - Latera) deformation due to

. pure moment loading A% = (@ ““i+|)/2

% % % W
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Torsion

T, = ke (o::os(e,l)cos(cb‘)(d1 -q:i”)
+ 5“‘(‘)(pi 'ﬁ“])
+ sinl@ (Y - Tiyq))
Bending moment inf - direction
Mp‘ = Kp (sin@i)coshti)(mi,] -«y)
+ cos(a, Jcosib ) (B; -Pyyy)
+ 51"(“1)(‘1*] = fi))

Bending moment in {- direction
Mfi = K‘(COS(‘Q‘-)Sin(ei)(a“.] -11.)
+ sinfact)(B, . -P )
+ cos(a )cos(0) (T, - ¥y, )

Acceleration Equations
Yi = (VY - VYj4q)/m
2§ = (VZj - VZj47)/m
&1 = (cos(®j+1)cos(0447) T,
- cos(di)cos(04) Ty
- cos@%i,y)sin(@ya) MB,,
+ cos{8%)sin(64)MB;
- sin(@441)cos @%4 1)MT 441
. + sin(@)cos(@%y) MF§)/ 1,
Bi = (sin@is1) T4 - sindy) Teg
+ cosibi.q)cos@_q) MBy.y
- cosibi)cos(a%;) MBy
- sindXi_1) Mfi_1 + sin(a%;) M4
+ (BL/2)(VZ§ + VZi-0))/1p
%i = (sin(@4.7)T%4.7 - sin(@4) WLy
sin(aci_1)MBi_1 + sin(a%{) MB;
cos (®i.7)cos@xi.1)MFiq
cos(@ i)cos %) MFy
(BL/2)(VYy + VY4.9))/ 1

+

Verification

The ability of the model to predict
static lateral buckling for the 198 cm (78 in)
long beam with 5.08 cm (2 in) by 25.4 cm
(10 in) cross-section is depicted in Figure
12. The ordinate of Figure 12 is the observed
frequency of the model in the Z-direction.
The abscissa is the ratio of the applied
moment to the theoretical critical moment,
[2]. Two different mass spacings are shown.
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Fig.12 - Beam frequency as a function
of the applied external
moment with two
different model
definitions

L

As in the Euler buckling problem, this
model shows an expected increase in period as
the constant load, is increased. Also,
the buckling load will approach the value
predicted by theory as the mass spacing
decreases. It should be noted that the points
labeled as buckling points are not necessarily
the lowest buckling values, but merely loads
at which each model exhibited buckling.

GENERAL BUCKLING MODEL

Description

In order to solve some of the problems in
elastic instability, modifications are made to
the standard 3-D beam model; the calculation
of the 3-D orientation of the tension/
compression spring for Euler buckling, the
calculation of the torsional component of
axial stress due to twist for local buckling
(angle section), and the calculation of the
3-D orientation of moment springs for lateral
buckling {rectangular section).

If al) of these effects were incorporated
into one model, the resulting computer program
could become quite cumbersome. Certainly
another type of more general spring-mass model
should be developed. Such a model should not
require the analyst to know the actual
buckling mechanism which might occur in the
structural system problem before the program
is run, Also, the possibility of including
yielding effects should be kept in mind.

Model

A1l of the buckling problems considered
so far involve axial stress; whether directly,
as in Euler and local buckling, or indirectly
as in the lateral buckling problem (pure
moment loading may be considered a combination
of tension and compression). In order to
account for all three modes of buckling in one
mode) it was necessary to replace the two
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bending springs and the one tension/
compression spring with a group of
tension/compression springs, each with
possible components in all three directions.
This spring group approximates the stress
distribution over the cross-section of the
beam.

aL

AsG
aL

AE
aL
—————AMAMA S AWAANA s

ELASTIC/STABLE

ELASTIC/UNSTABLE

Fig.13 - General buckling model (2-D)

Figure 13 illustrates a 2-D beam model
with the old arrangement for stable elastic
problems and the new arrangement. Shear
forces and their contribution to bending are
still calculated as given before in the
discussion of the basic beam model.

Assuming that the tension/compression
springs are evenly spaced, the first modeling
decision is the number of springs. Table 1
shows the ratio of effective area moment of
inertia of the spring group to the actual area
moment of inertia of the rectangular
cross-section as a function of the number of
springs. Since it is more efficient to use
less springs, and a mathematical model is
usually stiffer than the real structure, four
springs are recommended (4 by 4 or 16 springs
in a 3-D model).

A1l of the effects necessary to predict the
buckling modes presented in this report are
present in this new model and are obtained by;
1. following the motion at each end of
every spring,

TABLE |

PERCENTAGE OF AREA OF INERTIA AS A FUNCTION OF
NUMBER OF SPRINGS ON RECTANGULAR SECTION FOR A
2-D BUCKLING STUDY

umber of Springs ective Inertia
“Actual Inertia
T 0
2 75
3 88.9
4 93.75
5 96
6 97.22
7 97.96
8 98.44
9 98.765
10 99

2. calculating the new length and force
of every spring, and

3. calculating the contribution of the
springs for each of the six degrees of
freedom of both masses to which the
springs are attached.

Fig.14 - Location of end point of a
spring with respect to the
C.G. of a mass

The following procedure describes how this is
done for one point of interest as shown in
Figure 14:




-"_

1. known from this time increment load in Z-direction, mass (i) = R
. N Fa = F (2(/0) .
¢} A; T, (rotational velocites .

of mass of interest) load in X-direction, mass {i+1) =
- Fy
Xy, Y4, Zj (location of mass KA
with respect to original position) load in Y-direction, mass (i+1) = .
- F r
kpown from Jast time increment y b
Xpi. Yoi» Zpj (location of point load in Z-direction, mass (i+1) = ®
of interest with respect to c.g. - F; 4
of mass) >
load in & -direction, mass (i) =
calculate new position of point with (Fz) (Ypi) - (Fy) (Zpy) -
respect to c.9. of mass assuming small e
incremental rotations loFd ;n(p -;Hrez:ti;m(. ma)ss (i) = 5
. . . . . Fx) (Zpj) - (F3) (Xpj -
Xpi = Xpy + (By)(at)(Zpy) - (¥ 4)(8t)(Ypy) S
N ] . . . load in ¥ -direction, mass (i) = W
Ypi = Ypi + () (8t)(Xpj) - (6¢)(at)(Zpy) (Fy) (Xpj) = (Fy) (Ypy) -
Ipy = Z.p~| + (&1)(At)(v'pi) - (Bi)(bt)(x.pi) load in & - dir,, mass (i+1) = -
-(F2)(Yp441) + (Fy)(Zpis1) :
calculate the position of this point -
with respect to the original position load in B - dir., mass (i+1) = o
-(F)(Zpi+1) + (Fz)(Xpie1) <,
AXpi = Xy + Xpj <
load in ¥ - dir., mass (i+1) = A
AYpi = Yy + Ypj =(Fy)(Xpi+1) + (Fx}(Ypi+1) .
AZpy = L + 2pjy When compared to the models of the previous h'
sections, this logic is relatively simple to -
Since the end points of the springs use. With this model, rectangular sections
connected to a mass are assumed to may be joined (as was done for the angle o
lie in a plane (straight line if 2-D section) to form more complicated shapes, such .
model), it is not necessary to follow as "I" beams where the entire cross-section
every end point. Because three points does not remain plane under lateral or
define a plane, only two end points torsional buckling loads.
plus the mass C.G. locations are )
sufficient to define the locations of -
the other end points on the plane. *

2. calculate the new length and force in
the spring AN i
XL =ANpj +AXj41 +AL o

e
Z
Z
—
—
LA
'y

YL = AYpj + AYj4

ey
.‘l

I =Alpi +Ali+) /) il o

n an It |

I~ R 1] V": i ' [

D= xL+lh_§ZL ‘LA P .F‘ LM'—"

=anf 1 .

Force 27N . JT, LA ;

F=K(AL-D) i e FEERTRRATE ﬁu#l _H#-J‘,‘._ﬂ Iy

3. calculate the load in all six g

directions for each mass Fig.15 - Center mass motion of a beam .

load in X-direction, mass (i) = loaded with a constant >

Fx = F (X /0) external moment, M , and o
load in Y-direction, mass (1) = given an initial small -3

Fy = F (Y /D) pertubation at the center K
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Verification

Two problems are utilized to examine the
new model. The first problem is the lateral
buckling of a narrow rectangular cross-section
subjected to pure moment. The second problem
is the column buckling of an "I“ beam.

The results of the first problem are
shown in Figure 15. The beam has the same
dimensions as in the previous section and is
simulated by 13 masses. The figure shows the
deflection time histories of the center of the
beam for three different values of the
constant externally applied moment, My. As
before, the center of the beam is given a
small perturbation to get it moving. It is
obvious that buckling will occur between 90%
and 110% of critical loading. It appears that
2 loading of 100% critical is very close to
the value necessary to buckle the model. The
predicted critical moment is more accurate
than that calculated in the previous lateral
buckling problem because the effective area
moment of inertia was lower than the real
inertia, as indicated in Table 1,

The second problem is solved using three
rectangular beam models connected to form an
“I* beam with seven masses per beam. The
connections between masses on different beams
is the same type (with different spring
constants) as between masses on the same
beam. The model demonstrated buckling at 104%
of critical load and did not buckle at 93%.

These two problems demonstrate that the
new model and logic is proper.

PLASTICITY MODEL

Description

As mentioned in the last section, a
general buckling model should be developed
with forethought to elastic-plastic
phenomena. Since the general model does allow
for an approximation of the axial stress
distribution, it is possible to monitor each
spring on a mass surface so that a different
point and slope on the stress-strain curves
can be defined for each spring. These curves
are dynamic in that they can change during a
simulation due to permanent set. Logic of
this type allows for elastic and plastic
regions on the same cross section at the same
time.

The problem considered in this section is
based on an experiment performed at Brown
University (test #512, [3]) in which a mild
steel frame, subjected to a concentrated
explosive pressure pulse of short duration,
exhibits viscoplastic behavior during large
deflection. The impulse from the explosion is
calculated in [3]. This impulse is used to
obtain the initial velocity of the loaded area
of the frame for the simulation presented in
this section.
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Model

In the General Buckling Model section, a
logic was described that followed the end
points of each spring, calculated new lengths
and force, and found the contribution to the
acceleration equations for each spring for
each time increment. In the plasticity model,
everything remains the same except for the
force equation,

F = KL - D).

Where K will be replaced by a noniinear
relationship if the force has exceeded the
elastic region.

In this model, yielding (nonlinearity)
will only occur in the individual
tension/compression springs. This is
accounted for by prescribing data such as is
shown in Figure 16 as the initial form of the
stress-strain curves used to calculate force.
This data is based on information given in
Ref. [3] and is used in the sample problem for
this section. Permanent set is also accounted
for, thus the stress-strain curves will be
changing throughout the simulation.
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Fig.16 - Stress-strain-strain rate
for plasticity model

The known quantities, logic, and
equations necessary to incorporate Figure 16
into the model are:

1. Known from the preceeding time
increment

Dp (length of spring)

P

S,

)

ORI |
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Oys (unstressed length of spring,
AL * permanent set

BDg (amount a spring can deform and
still remain elastic, this
comes from the € = 0 curve on
Figure 16)

2. Known from the current time increment

D (length of spring)

Then, calculate the absolute value of
strain rate,

€= (Dg - D)/((aL)(at));

calculate the percentage increase in
yield strain due to strain rate effects

Q = (€/40)-2) (refer to [3]);
calculate the amount the spring may
deform and remain elastic based on
strain rate effects,

ADgp = (1. + Q) ADg;

calculate the change in Tength of the
spring from its unstressed length,

AD = Dus - D

|ADIS Dgy, then calculate
force as F = KAD and the logic is
complete for this spring.

If, |AD|PADg,, then calculate the
static yield stressO= EAD AL

And, calculate strain €= |Dus - Dl/AL

If,€< .01, set Ey = 0. (Ey =
Stress/Strain)

If,€>.01, set Ey = 18,333.

Calculate the change in stress above
yield,

A0= £y (lad] - ADg)AL;

and, the stress with strain rate
effects is,

Csr=(1+0Q) (0+A0).

The new unstrained length of the
spring is,

Dysn * Dys - (lAD| -ADg, -
(a0al/e)) an/laol
Calculate the new ADg,
ADgp = (O +AC) ALJE.

And finally, the force for one spring
is

F = A(O;y) A0AAD  (where, A is
the portion of the cross-sectional
area acted on by one spring).

The logic is simplified when strain
rate effects are excluded.

Note that shear forces and summation
of moments is still calculated as in
the previous section (General Buckling
Model)

Verification

Figure 17 shows a 20.32 cm (8 in) high by
30.48 cm (12 in) long frame which was
subjected to an explosive charge on the center
steel block.

o ——— 13. 24cm 'h)

fo—— 14.208 cm (s'n "
2.22¢m (e miQAQE !!un (m.,
LOCATION WPULSE [=3.0 N.- SEC.
{hsLe -sec)
4" . L_ ' l_ s:!!cu\
-4 MBom (e in)

(W in we 95(.20L0)

2032 cmidim)

1905 cm { 730} THICK STEEL

b

Fig.17 - Test setup for
elestic-viscoplasitc problem

Only plane motion was considered in the
model which necessitated four springs per
face. Since symmetry was assumed, only half
of the frame is modeled. The vertical leg was
modeled with sixteen masses and the horizontal
member by eleven masses.

The results of the simulation of this
event are shown in Figures 18, 19 and 20, In
Figure 18 the model strain histories at the
top of the vertical columns are presented
along with test results. The observed
frequencies differs by about only 10X from
test, the initial buildup does not match, and
the final permanent set is within 83% of
test. The model displacement history of the
center steel block is given in Figure 19. The
reader will notice that the frame is still
oscillating at time = ,043 sec (there is no
damping included in the model). Probably the
most important result is shown in Figure 20,
which compares the final deflection of the
frame model with the test result. The final
deflection of the test is shown as a solid
1ine and the model result, shown as a dashed
line, is obtained by averaging the residual
oscillation of the model.
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Fig.20 - Final deformation of frame

CONCLUSION

The procedures developed herein for
buckling of structures appears to have some
validity with respect to static and dynamic
buckling responses of compression members.

For computer efficiency, the first three
models should be used if the mode of buckling
is known. The general model should be used if
the buckling mode is unknown.

The yielding model shows promise but only
one comparison to test data has been attempted.
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LOW ORDER DYNAMIC MODELS OF INDIAN REMOTE SENSING SATELLITE

M. Sambasiva Rao, B.G. Prakash and M.S.S. Prabhu
Structures Division, ISRO Satellite Centre,
Bangalore 560 017, India

Simple low order equivalent dynamic models of Indian Remote Sensing
Satellite (IRS) are generated. The models consist of physical elements
like springs, beams, etc., with lumped masses. Two decoupled models,
one in longitudinal and the other in lateral direction, are generated
representing the dynamic characteristics of the satellite adequately
~ in the low frequency range of 0-100 Hzs. A building-block approach
is followed in systematically constructing the models. First, conceptual
models are generated based on the study of load paths, modes of vibration
etc.,, from a detailed finite element analysis of IRS already made. The
important spacecraft subsystem models are derived by simulating their
base-fixed modes of interest using equivalent physical single degree
. of freedom systems by matching the frequencies and modal effective
masses. This required a new approach in representing subsystems with
multi-node interfaces for their equivalent masses and forces. Lastly
. the subsystem models are assembled and interface elements are tuned
to match with the basic dynamic behaviour of IRS as observed from
detailed finite element analysis. The dynamic models so constructed
are used in the coupled dynamic analysis of the spacecraft and the launch
vehicle and the design loads of spacecraft are refined. Also the models
are used in carrying out many parametric studies to obtain changes
in the dynamic behaviour of the spacecraft with design changes.

1. INTRODUCTION than in actual flight. Realistic simulation
of such base impedence in tests using a vibrator
system is still in the infancy [2] and overtesting
is generally controlled by ‘notching' the input

A spacecraft is subjected to the most severe
environment of its mission during the launch

- phase and it depends on the vehicle and spacecraft based on the results of detailed coupled analysis. :
. dynamics and their interaction. Since this inter- -
.. action cannot be obtained before the spacecraft Dynamic models of spacecrafts developed ~
.. design is completed, an initial estimate of the for launch vehicle/spacecraft coupled analysis i
.- design loads of the spacecraft is arrived at should possess some desirable characteristics =
by performing a coupled dynamic analysis of which are the outcome of the functional needs 1
the spacecraft with the vehicle assuming the of these models. Firstly, in the initial stages
= spacecraft to be a rigid mass. Alternatively, of a spacecraft project, not only design loads bon
- previous experience with other similar spacecraft are approximate, but also there could be choices
N launched with the vehicle is also used in defining in the launch vehicle. The design of the space- oy
. the initial dynamic environment for the spacecraft. craft itself will not be available in all details. ol
N However, a better load definition is obtained To work within these constraints, the dynamic -4
5 by carrying out a detailed coupled analysis of model of the spacecraft should be as small et
b launch vehicle and spacecraft using the flexibility as possible to be cost effective in conducting .
characteristics adequately [1]. The results of repeated analyses for accurate load definition i
- this coupled analysis then provide the refined with different environments. The small size b
loads useful for validating/improving the design also helps in carrying out parametric studies :
. of the spacecraft and its subsystems. Further, with respect to the spacecraft design. Secondly, N
-, during the qualification tests, since the spacecraft it is desirable that the model be built up from ':-‘
- is tested as a base-fixed system as against the simple physical rather than mathematical ‘N
- flexible support provided by the vehicle in flight, elements to simulate important subsystems. e
the spacecraft loads would be generally higher Mathematical elements are nothing but condensed Ky
.' ':'1
b I
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stifness and mass matrices which may correspond

to physical and/for modal coordinates.  The
choice of physical elements mainly helps in
identifying a major subsystem in the model,
in computing loads on the subsystem straight
away from coupled analysis and in directly
linking changes in dynamic model to frequent
changes in the design of the subsystem early
in the project. Thirdly, the model should satis-
factorily represent the flexibility characteristics
of the spacecraft and the subsystems in the
low-frequency spectrum of interest (generally
0-100 Hzs range). Fourthly, it is preferable
to develop models separately in longitudinal
(along vehicle axis) and lateral directions. This
follows from the fact that most of the launch
vehicles are axi - symmetric in nature and
their models are generated decoupled in longi-
tudinal and lateral directions.

The use of simple low order dynamic models
for spacecraft structures is well recognised
in literature and some procedures are available
{3-7] for generating such models. Of all these
procedures, the approach which uses modelling
of important modes of a subsystem by equi-
valent single degree of freedom systems is
the most attractive. These principles were
applied at complete structural system level,
in a previous paper [8], to derive an equivalent
low order dynamic model of METEOSAT space-
craft. The spacecraft had a single (statically
determinate) interface node with the APPLE
spacecraft at‘.ched to it and the dynamic
model was built wusing spring-mass systems
and cantilever beams, carrying tip mass and
inertia. The equivalent single d.o.f. system
for a mode is obtained by matching the 'effective
mass' (when a structure is subjected to base
acceleration, the reaction forces/moments
developed at the base can be expressed as
a series summation where each term represents
the contribution from a base restrained elastic
mode of the structure which, in turn, is given
as a product of base input acceleration, a transfer
function and a characteristic mass associated
with the mode called ‘effective mass'. The
modal effective mass is a square symmetric
matrix corresponding to base d.o.f. and is inde-
pendent of the type of normalisation performed
on the mode) and natural frequency of the
particular mode with the corresponding quantities
of the model. As the sum of the effective
masses of all modes of a structure is equal
to its total mass it is necessary to represent
in the model only such modes which have signi-
ficant effective masses in relation to the rigid
mass. The contribution of left out modes is
represented by a so called rigid 'residual' mass.
These effective mass principles are so far
used in modelling structural systems having
single node at the 'base' or interface with
another system. Generally, spacecraft subsystems
have multi-node interfaces with other subsystems
and some important modifications are needed
before effective mass concepts can be used
to model such subsystems.

The present paper describes the generation
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of low order dynamic model, of Indian Kemote
Sensing (IRS) Satellite. IRY is a first step
in evolving an operational spacecraft to obtain
timely, reliable and accurate information in
the fields of agriculture, hydrology and geology
for the natural resource management system.
It is a sun-synchronous 3-axis stabilised system
scheduled for launch in 1986. Two decoupled
models of IRS representing the longitudinal
and lateral behaviour of the spacecraft are
developed as required by the launch vehicle
authorities.

The development of equivalent dynamic
models of IRS started with a conceptual model
evolved on the basis of load paths, ana location
of major subsystems in the actual spacecraft.
The results of static and free vibration analysis
of a large detailed finite element model of
the spacecraft [9] also provided an important
data in arriving at the conceptual model.
Each important subsystem is represented in
the model by one or more of its base node(s)-
fixed elastic modes, simulated by an equivalent
simple single d.o.f. system like a spring-mass
or a beam with a lumped mass. The selection
of modes retained for representing a subsystem
is based on their effective masses, obtained
from a detailed analysis of the subsystem.
The subsystem models thus generated are
then connected in such a way that the complete
model can represent the overall behaviour
of IRS spacecraft as observed in the global
modes of free vibration analysis of detalled
finite element model. To account for the joint
flexibility between subsystems, f{iexible springs
are introduced at nodes corresponding to the
interfaces. The stiffness of these springs are
initially assumed based on the properties of
actual elements joining the subsystems. Later
they are tuned so that the results of the dynamic
model match with the results of detailed finite
element analysis. Except for the sizing of
various physical elements used in the dynamic
model, the entire configuration of the model
is visualised at the conceptual model stage
itself.

The IRS dynamic models thus developed
are used in the coupled analysis of launch vehicle
and spacecraft. The refined design loads are
generated and used in validating the spacecraft
design adequacy. Test specifications for the
spacecraft and its subsystems are suitably modified.
The simple dynamic models are also utilised
in several parametric studies aimed at improving
spacecraft design.

2. DETAILED FINITE ELEmENT ANALYSIS
OF IRS STRUCTURE

2.1  Description of the structure

A brief description of IRS structure 1s
given here for the purpose of an easy understanding
of the modelling of the structure. Fig.l shows
a disassembled view of the spacecratt indicating
the major structural elements and supsystems.
The structure basically consists of 3
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(a) a box like structure made up of four vertical
decks V1, V2, V3 and V4 and two horizontal

decks at the top and bottom. All the decks
are of honeycomb construction and carry
subsystem packages. They are connected
to each other all along their common edges
by a framework of angles.

(b) a main cylinder stiffned internally by 20
longitudinal stiffeners forming the major
load transfer path. The top of the cylinder
is attached to the top deck through a stiffening
ring (angle) and the bottom is attached
to the bottom deck. There is an intermediate
ring (channel) which provides circumferential
stiffening to the cylinder around the middle
level.

(c

~—

an interface ring (channel} with its top
attached to the bottom of the cylinder.
Its bottom interfaces with the launch vehicle
at 4 points through lugs.

(d) an RCS deck (honeycomb) located midway
in the cylinder and attached to the inter-
mediate ring through 20 support brackets.
This deck carries fuel tanks and other
RCS elements for the control of the space-
craft.

(e) four main struts connecting the cylinder
assembly with the bottom deck. They
run between the intermediate ring and
the bottom deck corners with pin-jointed
ends. In' addition to main struts there
are 3 secondary struts on either side of
the cylinder connecting the vertical decks
V2 and V4. .

The global axes system followed throughout
the analysis work is shown in Fig.l.

2.2 Finite Element Analysis

A detailed dynamic analysis of the space-
craft structure is carried out by the application
of finite element method using static condensa-
tion procedures available in the general purpose
finite element software package ASKA. This
work forms a part of detailed static and dynamic
analysis of the satellite structure carried out
by our entire group. Only relevant details
needed for the purpose of this paper have
been extracted from RefJ[9). The IRS structure
which is divided into 2! substructures is idea-
lized by space frame and flat-shell elements.
Structural elements such as stringers, stiffener
rings, main and secondary struts, etc., are
idealized by space frame elements which have
the capability to account for eccentricity
between a node and centroid of the beam.
The cylinder and other honeycomb panels
are idealized using flat-shell elements which
incorporate the distance between face sheets
of the honeycomb element, but the effect
of the core material is not included. Local
coordinate systems (different from global
system) have been appropriately defined at
many nodes of the structure, This, together
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with the condensation of relevant boundary
degrees of freedom at substructure fevel, is
used to define ‘'hinges' at relevant nodes in
the required directions. Fig.2(a) shows the

disassembled view of the finite element idealisation

of the IRS structure showing various constituent
substructures. The sketch does not show all
the elements but shows only a selective view

corresponding to dummy flange elements introduced

for ease of understanding and clarity in plotting.

The detailed finite element model has
a total of 2419 effective degrees of freedom
out of which 1406 d.o.f. are condensed out
at the substructure level and the remaining
1013 are carried to the main structure assembly.
Whereas all the main structure equations are
straight away wused for static displacement
and stress analysis, a further static condensation
to the level of 485 d.o.f. (retained) is carried
out for free vibration analysis. Mass and inertia
properties of IRS spacecraft computed using
this mode! are given in Table 1{(a).

Results obtained for the first 35 system
frequencies {(upto 100 Hz) are given in Table
1{b) along with brief description of modes of
vibration. Of these, the first three modes
correspond to the global modes and are shown
graphically in Fig.2(b,c,d). The remaining are
mostly local subsystem modes. These results
are carefully studied before deciding on which
global and local modes should be represented
in the low order dynamic models of IRS. Clearly
the dynamic model must be able to represent
the fundamental global longitudinal and lateral
modes and also the important modes of major
subsystems like top and bottom decks, vertical
decks, RCS deck, etc., which fall within the
frequency range of 0-100 Hzs. Though it is
observed that there are several modges which
come under this category all are not equally
important. The question of finding out which
of these modes are really important is sorted
by performing a free vibration analysis of each
major subsystem for its base-fixed modal effective
masses and is discussed in a later section.

3. DEVELOPMENT OF DYNAMIC MODELS
OF IRS

3.1 Conceputal Modei

First an attempt is made here to evolve
an equivalent Jow order dynamic model
for IRS, conceptually. This forms an important
step because as pointed out earlier, the complete
framework of the model is frozen at this stage.
It includes identifying major spacecraft subsystems
to be represented in the model, simulation
of these subsystems by simple equivalent single
d.o.f. systems with the provision that they
can be easily modified later to accommodate
the subsystem design changes and assembling
the models of the subsystems to represent
the overall behaviour of the spacecraft. The
physical nature of the spacecraft as per the
structural design and the various equipment
deck layouts and results of static and free
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vibration analysis of detailed finite element
model provide the necessary information to
form the conceputal model. The next logical
step is the estimation of the stiffness values
of various physical elements and nodal masses
to be used in the model. This is followed by
tuning these values to match the behaviour
of the dynamic model with that of the detailed
finite element model. The entire procedure
of obtaining simple low order models starting
with a conceptual model is shown in the flow
chart in Fig.3.

The mass distribution on IRS structure
indicates that the vertical decks V2 and V4
are heavier than V1 and V3 and a sort of symmetry
exists about the plane YZ (Fig.l1). The symmetry
can also be seen from the data given in Tabie
l. Therefore the plane YZ is chosen for repre-
senting the dynamic characteristics of the
spacecraft in the small order model. The symmetry
also helps in reducing a complex 3 dimensional
structural system into a 2 dimensional system.
Further, the design and detailed analysis of
the spacecraft, allow generation of two separate
decoupled models for representing longitudinal
and lateral behaviour, further reducing the
size of each model.

(i) Model for lateral vibration

When the structure vibrates in the YZ
plane in the lateral direction (Y), it is reasonable
to assume that the decks V1, V3, top and bottom
decks act like rigid members.  This follows
from the fact that the equivalent in-plane
stiffness of the honeycomb decks is much larger
than the bending rigidity. Thus only V2 and
V4 decks participate as elastic raembers in
the vibration of box-like structure (see 2.1)
and need to be modelled. The boundary condition
for these decks correspond to a case in between
all edges simply supported (SSSS) and all edges
clamped (CCCC). Top, bottom, V1 and V3
decks being quite stiff in their own planes
provide a simply supported condition along
the edges of V2 and V4. The angle members
running all along the edges of the box provide
restraint against edge rotation whose magnitude
depends upon the torsional rigidity of the angles.
This is also supported from a review of deiailed
finite element analysis results [9]. However,
to start with, this rigidity can be neglected
and V2 and V4 modelled as SSSS decks mainly
from the point of view of convenience. Finally
by using flexible torsional springs (with one
end grounded) at the edges, suitable edge conditions
can be simulated. In addition it is assumed
that secondary struts also provide a point support
to the decks at the place of their attachment.
Now V2 and V4 can be modeiled oy beam mass
systems ABC and DEF respectively as shown
in Fig.4, using the principles indicated in Appen-
dix . Each beam mass system (ABC or DEF)
consists of one or more parallel beams having
a lumped mass or inertia. Each beam is an
equivalent single d.o.f. representation of an
important base -fixed elastic mode of the deck

V2 or V4 and is obtained by matching the effective
mass and natural frequency of the corresponding
mode. The modes selected for simulation in
the model are based on the frequency range
of excitation, here 0-100 Hzs, and the relative
value of modal effective mass as compared
to the subsystem rigid-mass. After accounting
for such 'dynamic masses' of the deck in this
way, the residual or ‘'static mass' is lumped
at the bsse or supports of the deck, such that
the centre of gravity of the model remains
same as that of the subsystem. The parallel
beam arrangement for a subsystem has the
advantage that any future modifications in
that component can be easily accommodated
in the mocel without affecting the other compo-
nents.

The stiffened cylinder and the interface
ring are mainly stiffness elements, their mass
being quite low. From the first and second
modes of vibration of IRS as seen from the
results of detailed analysis, it can be concluded
that the cylinder behaves more like a cantilever
beam. The cylinder aspect ratio i.e., length
to diameter, being small (of the orger of 1)
it is necessary to include both bending and
transverse shear deformations I1n the beam
model used for simulating the cylinder. Thus
the cross sectional moment of Inertia of the
cylinder due to lumped areas of the various
stringers on the periphery and also tne shape
factor, given as the ratio of average to maximum
shear flow in the cylinder cross section when
subjected to transverse shear force, are computed
and incorporated in the beam model as the
initial estimates. As poth top and bottom decks
are quite rigid in lateral (Y) direction, the
beam model of the cylinder can be directly
connected to the middle points of rigid beams
representing the top and bottom decks as shown
in Fig.4.

The main struts connect the cylinder ana
the bottom deck. As the bottom deck 1s assumed
to be rigid in the lateral dynamic model, the
flexibility of main struts need not be represented.
On the other hand the secondary struts which
connect the main cylinder with V2 and V4 are
mainly stiffness elements and coinsiderably
affect the vibration of the decks. The struts
are long, slender and pin-ended. These charact-
eristics of the struts enable us to simulate
them by equivalent linear springs in the dynamic
model, as shown in Fig.4. The aetailed analysis
results also support this as no signiticant bending
of the struts is observed.

The RCS deck is one of the heavy and
major subsystems in IRS. The mass distribution
on this deck 1s such that it has a large moment
of inertia about the nuddle plane of the deck.
Consequently, whether IRS i1s vibrating in lateral
or longitudinal direction RCS deck unaergoes
out-of-plane vibration. Bbased on modal etfective
masses, suitable equivalent spring mass systems
are constructed to mode! the RCY deck behaviour
in spacecraft lateral vibration. The RCS subsystem
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model 1s represented by IJ in Fig.4.

Fig.4 thus shows the conceptual dynamic
model of IRS in lateral direction developed
as explained above.

(ii) Model for longitudinal vibration:

When the spacecraft vibrates in the YZ
plane in the longitudinal direction (Z), all the
vertical decks VI, V2, V3 and V4 behave like
rigid elements and only the top, bottom and
RCS decks need simulation in the dynamic
model as elastic members as far as the box-
like structure is concerned. The vertical decks
provide simply supported edge conditions for
the top and bottom decks. The cylinder also
provides a simply supported condition for top
and bottom decks all along its interface. This
is due to the fact that the vertical decks and
the cylinder are relatively stiff in the longitudinal
direction. As in the lateral model, equivalent
parallel beam-mass systems are generated for
top and bottom decks. These systems have
4 point supports as indicated by ABCD and
EFGH in Fig.5 for top and bottom decks respect-
ively. Again flexible torsional springs are provided
at the support points to account for the rotational
restraint generated by stiffening members
like angles and channels running all along the
interface edges of these decks.

From the first mode of vibration of the
IRS structure as indicated by the detailed analysis
it can be observed that it involves the vibration
of only vertical deck assembly moving parallel
to cylinder axis, the cylinder periphery providing
support for both top and bottom decks. This
behaviour cannot be represented by the dynamic
model if we connect by linear elements the
middle points of top and bottom decks as is
done in the lateral model. An intermediate
support corresponding to the actual periphery
of the cylinder should be provided in the model
for the top and bottom decks. To achieve
this objective, the cylinder is modelled by equi-
valent linear springs and joined with the top
and bottom decks as shown in Fig.5.

In the longitudinal vibration, the secondary
struts do not play any role as they are connected
to the vertical decks which are assumed to
be rigid. The main struts, however, are simulated
by equivalent linear springs joining the middle
of the cylinder with ends of bottom deck.
The RCS deck is again simulated by an equivalent
spring mass system as in the lateral case and
is identified by 1J in Fig.5.

The complete conceptual dynamic model
of IRS derived using the above ideas is shown
in Fig.5.

3.2 Simulation of subsystems

in order to determine the physical properties
of various elements visualised in the conceptual
model, the major subsystems are analy sed
individually using detailed finite element ideali-
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sations similar to the ones employed 1In
the detailed structural analysis of the spacecraft.
General purpose structural analysis program
ASKA is extensively used in these analyses
and the details of the results are discussed
here.

(i) The main cylinder: The stiffened cylinder
is divided into two elements cutting it oif
at the level of RCS deck. The cross section
of the cylinder is simplified as a thin shell
with lumped areas corresponding to stringers
on its periphery. The equivalent spring constant
of each element representing the cylinder in
the longitudinal direction 1s computed from
the cross sectional area and length. Similarly
the moment of inertia of the beam element
used for simulating lateral vibration characteri-
stics of the cylinder is obtained from the second
moment of the lumped areas on the simplitiead
cross section. The shape factor Ky is also
calculated for the beam (.312) as the ratio
of average and maximum shear flows in the
cylinder when it is subjected to a transverse
symmetric load. To check the adequacy of
the beamm model in the lateral direction, both
the detailed finite element model and the equi-
valent model of the cylinder are subjected
to unit tip load with their base clamped.
The displacements obtained indicated good
matching. The wuniformly distriputed mass
of the cylinder is lumped at the 3 nodes in
the model using a lumped mass approach.

(ii) The strutst The main struts (2 iNos. on
either side of cylinder) and the secondary struts
(3 Nos. on either side of the cylinder) are assumed
to behave like uniform rods. Thus they have
only axial stiffness based on their cross sectional
area and length and are located in different
directions. Their effective spring constants
are computed taking into account their new
length and number (one on each side of the
cylinder) of springs representing them in the
dynamic model. Only main struts are simulated
in the longitudinal model and only secondary
struts are simulated in the lateral model.

(iii) The RCS deck: The detailed tinite element
idealisation of RCS deck is used with its bounaary
simply supported In obtaining its free vibration
frequencies and the effective masses of the
corresponding modes. Because of the multinoge
interface of RCS deck the total reaction force
transmitted to the base when the entire base
is subjected to unit longitudinal acceleration
is computed as effective mass of a mode in
the longitudinal direction.  Knowing this mass
and the corresponding trequency in the longitudinal
direction, the mode 15 simulated 1n the model
by a spring-mass system where the mass equals

the effective mass. A similar approach
1s followed in the lateral case also. The details
of RCS deck analysis are shown in Table 2(a).
it is found necessary to sumulate only one modge
each in the longitudinal as well as in the lateral
models. The rest of the mass of the subsystem
after subtracting the 'dynamic mass' 1s lumped
at the base of the RCS model which corresponds
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to middle point of the cylinder.

(iv) V2 deck: In the longitudinal model, V2
deck is simulated by linear springs of large
stiffness to represent its rigidity. Its rigid
mass including that of the solar panels, is lumped
at both the ends of the spring such that the
centre of gravity is at the same level as that
obtained in the detailed analysis of V2 deck.
For obtaining the equivalent beam-mass models
of the deck to represent its out of plane behaviour,
modal effective masses of the deck are computed
with respect to the 3 lateral support d.o.f.
corresponding to top and bottom decks and
secondary struts. Because of statically indeter-
minate nature of the beam in this case, effective
forces corresponding to unit lateral base accele-
ration are matched between the modal model
and the deck by a trial and error procedure
in addition to matching the natural frequencies.
The results of the free vibration of V2 deck
are shown in Table 2(b). An example calculation
for the equivalent beam-mass representation
of the deck mode is given in the Appendix.

(v) V4 deck: The procedure adopted for obtaining
equivalent models for this deck is similar to
that of V2 deck and the results of free vibration
of V4 deck are included in Table 2(c).

(vi) VI and V3 decks: Their total mass is
simulated in the models at the four corners
corresponding to the edges of top and bottom
decks, such that the CG is properly represented.

(vii) Top and bottom decks: In the lateral
model these are represented as rigid beam
members.  In the longitudinal model the top
deck is simulated by a beam supported at four
points and carrying a mass; and the bottom
deck by 2 identical beams’ supported at two
points and carrying lumped masses. Again
effective longitudinal base forces for unit base
acceleration are considered for modeiling these
beams. The results of the free vibration analysis
of top and bottom decks are shown in Tables 2(d)
and 2(e) respectively.

(viii)  Interface ringt The interface ring is
treated as an extension of the stiffened cylinder
and the same spring and beam characteristics
as that of the cylinder are used in representing
it in the dynamic models.

(ix) Interface joints: At all the nodes corres-
ponding to subsystem interfaces, flexible torsional
springs, with one end grounded, are introduced
to realistically account for the joint flexibilities.
To start with, these spring constants are set
to high values.

The final longitudinal dynamic model of
IRS constructed wusing the subsystem model
data is shown in Fig.6. Similarly the lateral
model is shown in Fig.7.
3.3 Tuning of the dynamic models

It may be recalled that most of the subsystem
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models are developed with the assumption that
their interfaces with other subsystems are
simply supported. This is mainly done because
it is easy to simulate them by simply supported
multi-span beam-mass systems. But, in the
actual structure, at these interfaces, stiffening
members like rings, channel or angle members
exist which apply some constraint against the
rotation and this must be taken into account
in dynamic models also. For this purpose flexible
torsional springs, with one end grounded, are
included at various interface nodes in the dynamic
models. Though the stiffness values of these
springs can be estimated fairly well from the
cross sectional geometry of the corresponding
members in the spacecraft, such an exercise
is not done and instead they are all initially
assumed to be high. The reason for following
this procedure is this: the various local modes
of subsystems simulated in the model can be
adjusted to match with the appropriate frequencies
obtained in the detailed finite element analysis
by suitably altering the stiffnesses of these
torsional springs.  This is true not only for
local modes but for global modes too, which,
however, may need tuning of some beam or
linear spring elements also.

First we look at the tuning of frequencies
of longitudinal model of IRS (Fig.6), which
requires simulation of the overall longitudinal
mode 3 (Table 1) of the spacecraft, the RCS
deck mode 7 and top deck mode 15. The first
mode is a global one and the Jatter two are
local. It is also clear that adjusting slightly
any of these frequencies does not seriously
affect other ones. Thus tuning of each frequency
can be done almost independently. The RCS
mode is represented by a linear spring, element 6,
in the low order model and its frequency can
be manipulated through its spring constant.
There are 8 torsional springs, elements 7-14&,
in the model which can be used for adjusting
the other two frequencies.  Considering that
symmetry has to be maintained about Z-axis
because of the nature of the model, the effective
torsional spring stiffnesses at our disposal reauce
to four. Further, it is easy to visualise that
the global longitudinal mode frequency is sensitive
to the spring stiffnesses of elements 11-14
and the top deck frequency to those of the
remaining torsional springs, viz., elements
7-10. The size of the model being small (21
d.o.f.) the trial and error procedure which can
be wused for tuning the stiffnesses of these
torsional springs to adjust the two frequencies
of the model is not a difficult task. Wwe now
turn our attention to tuning the lateral model
(Fig.7) frequencies of IRS. The global lateral
mode | can be adjusted by altering the bending
rigidity of the adaptor simulated by beam element
8 in the model. The first lateral mode of
V4 deck i.e., mode 12 can be adjusted through
torsional springs 6 and 7. Similarly the second
lateral mode frequency of V2 deck can be
manipulated through tursiona! springs & and
5. RCS deck frequency,(mode 13)can be corrected
by altering the linear spring stiffness of element 3.
Trial and error procedure can be easily employed

. Nt R

LIRS

W)

SV AR PG

rFr e e v s




3
2
b
)
¢
2
|

w o

Y O .'- A

X

in tuning the lateral model element stiffnesses
also as the size of the model again is quite
small (21 d.o.f.).

Thus the trial and error procedure of adjusting
the various stiffness constants is effected till
a satisfactory tuning of important global and
local mode frequencies of the dynamic models
with those of detailed analysis of the structure
is achieved. However, it is ensured that the
final values of torsional spring constants are
within the range of actual torsional stiffnesses
of interface members and are not mathematical
adjustments.

3.4 Dynamic Models of IRS

Complete details on stiffness parameters
of various elements, nodal mass distribution,
mass and inertia properties and natural frequencies
corresponding to the tuned longitudinal dynamic
model of IRS (Fig.6) are given in Table 3.
Similar details on lateral dynamic model (Fig. 7)
are presented in Table 4. A good matching
of results obtained using the detailed finite
element model and low order models developed
in this paper can be seen by comparing Table |
with Tables 3 and 4. For ready reference this
exercise is shown in Table 5.

The dynamic models of IRS generated
here mainly took into account the constraints
imposed by the vehicle authorities. Consequently,
two decoupled models, one for longitudinal
behaviour and the other for lateral behaviour
are developed. Thus a complex structure with
mass distribution in 3 dimensions is reduced
to a simple model in 2 dimensions. This has
been possible due to the symmetry in the structure
and its mass distribution in IRS. A plane with
heavier mass is therefore considered for modelling.
But in the process, the dynamic behaviour
in the other perpendicular plane {corresponding
to V1, V3 deck vibration) of IRS and also its
torsional vibration characteristics could not
be simulated in the model. But it is easy to
see that all these aspects can be incorporated
in the model if 3 dimensional low order dynamic
model is generated again using the same principles
of this paper. This work is currently in progress.

It is appropriate here to mention some
of the limitations of the procedures mentioned
in this paper in deriving equivalent low order
dynamic models of structures. Simulation of
modes of structures with single base node by
equivalent single d.o.f. systems is straight
forward but it is not so when the base has
multiple nodes (or statically indeterminate).
in the present paper a trial and error procedure
is successfully employed in obtaining equivalent
models for some systems with more than one
base node. Though it is found that in such
cases it is possible to generate simple single
d.o.f. systems, some more effort is needed
to evolve a general procedure for systematically
obtaining simple models for structural systems
with statically indeterminate interfaces.
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4. SOME PARAMETRIC STUDIES USING IRS
DYNAMIC MODELS

The small order dynamic models of IRS
derived in this paper are very useful for performing
parametric studies to improve the design efficiency
of IRS structure. Three such studies conducted
are reported here. The first one is a study
on the design adequacy of the structure to acco-
mmodate possible increase in the payload at
a later stage. The second one relates to raising
the overall longitudinal frequency of the space-
craft and the third one aims at improving the
design of secondary struts which mainly influence
the behaviour of vertical decks.

The IRS payload being a very heavy package
(175 Kgs) situated at the top of the spacecraft
{on the top deck) exercises considerable influence
on the natural frequencies and stress levels
of the overall spacecraft. The present position
of the payload is such that most of its mass
is located directly on the main cylinder. This
has a large influence on the fundamental frequency
of the spacecraft in the lateral direction but
not much in the longitudinal direction where
the top, bottom and vertical decks move parallel
to the cylinder axis. If the payload position
is altered such that its mass is uniformly distri-
buted on the top deck, it will affect the funda-
mental longitudinal frequency significantly.
The frequency constraints imposed by the vehicle
on the spacecraft are 15 Hzs in lateral direction
and 30 Hzs in longitudinal direction. With the
present payload configuration, the spacecraft
has a fundamental lateral frequency of 25.7
Hzs and a longitudinal frequency of 36.7 Hazs.
Thus there is a good margin available with respect
to lateral frequency constraint but is somewhat
close in the longitudinal case. So it is desirable
to maintain the longitudinal frequency atleast
at the present level even if there is a change,
in future, in payload mass and its distribution.
With this in view, a study has been made, using
the low order longitudinal dynamic model of
IRS, to see how the spacecraft frequencies
and stresses due to static acceleration loads
change with payload mass changes. The height
of the centre of gravity of the payload from
its base is assumed to vary proportionally with
its mass. Suitable design changes are proposed
to improve the situation where needed. Details
of the results of the study are presented in
Table 6.

From the design of the IRS structure ana
the free vibration analysis results it is clear
that the main struts play an important role
in deciding the overall fundamental longitudinal
frequency of the spacecraft. It is also reasonable
to assume that changing the area of cross section
of the main struts (thereby altering their stiffness)
is the best way to control the fundamental
longitudinal frequency of the spacecraft. Thus
a study of the variation of this frequency with
respect to the main strut area is conducted
using the longitudinal low order dynamic model
of IRS. The results of the study are shown
graphically in Fig.8. The present design area
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for the main struts is taken as the base value

(100%). The study revealed that there is consider-
able scope to raise the longitudinal frequency
of the spacecraft by changing the area of the
main struts. The frequency is observed to
vary almost linearly with respect to the strut
area in 100% to 300% zone.

Finally a study is carried out, using the
low order lateral dynamic model of IRS, to
estimate the variation of the fundamental
frequency of V4 deck with respect to the cross
sectional area of the secondary struts (see
Fig. 9). The present design value for strut
cross sectional area is taken as base value
(100%). From Fig.9 it can be seen that the
area of the secondary struts can be reduced
to about 60% of the present value withcut
any appreciable change in the frequency of
the V4 deck.

5. SUMMARY AND CONCLUSIONS

In this paper, equivalent dynamic models
are generated for Indian Remote Sensing Satellite
(IRS). They are of small size, decoupled in
longitudinal and lateral directions, consist of
physical elements and are built-up from important
subsystem models. They represent the flexibility
characteristics of the spacecraft in the low
frequency range and also the rigid body properties
like mass, centre of gravity, inertia, etc.
The advantage of having small order dynamic
models of structures wusing physical elements
are emphasised here and a method for generating
such models is illustrated through IRS. It may
be noted that the method, however, is quite
general, can be used in other structural systems
too and not restricted to spacecraft application.

Subsystem models in this paper are derived
by simulating the important base-fixed modes
by equivalent single degree of freedom systems.
This sort of simulation is easy for subsystems
with single base node where the modal 'effective
mass' and frequency can be matched. But
in a spacecraft where most of the subsystems
have multi-node bases a different approach
is required for modal simulation. In such cases
the 'effective forces' at the base for unit base
acceleration are matched by trial and error
procedure. This procedure requires further
standardisation and is being attended to. These
concepts are incorporated in the general purpose
finite element structural analysis program ASKA
(see Fig.10) and used extensively in IRS subsystem
model generations.

The dynamic models of IRS are used in
the coupled analysis of the spacecraft with
the launch vehicle. This has resulted in refined
load levels which are used in validating and
improving the design of the spacecraft and
also in its qualification tests. Being small
and representing the spacecraft behaviour accu-
rately in the low frequency zone, the dynamic
models are found to be very convenient in
parametric studies carried out to predict changes
in the dynamic behaviour of spacecraft with
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design changes. Currently the models are con-
structed in 2 dimensions, mainly due to constraints
from the vehicle side, but generalisation to
3 dimensions is straight forward.
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TABLE | o~
Free Vibration Analysis Results of IRS Using Detailed Finite Element Model S
K\
3
\ (a) Mass and Inertia Properties >
S
Structural Mass in Kg$ 150.6 ":
Total Spacecraft Mass in Kgs 876.4
: Centre of gravity location in M X = 0.0092
g -— be
(From the base of spacecraft) Y = 0.0129 e
- ‘>
F3 = 0.8570 Rt
R
Moments of Inertia about spacecraft i;.
base in Kg M* 1 = 1.03E+3
o XX L
X Ly = 0.99E+3 5
. i - 0.41E+3 102
: zz :_.
Uy = 0.19E+2 i
X 1 yz = -0.11E+2 .
2 | 2% = -0.12E+2° ‘::
L o '\:
(b) Natural Frequencies and Modes
- Frequency . .
" Mode No. in Hzs Mode Description .
y 1 25.6 Lateral (Y) Global Mode -
X 2 26.6 Lateral (X) Global Mode .~
3 36.2 Longitudinal (Z) Global Mode .
4 45.0 Local Solar Panel Mode
: 5 45.6 Local Solar Pane! Mode -
. 6 46.0 Local Solar Panel Mode .
- 7 46.5 Lateral Mode of V1 and RCS Decks .
. 8 47.0 Lateral Mode of V1 and V3 N
.. 9 48.1 Lateral Mode of VI and V3 >
- 10 49.6 Solar Panel Assembly Mode N
i 11 49.6 Solar Panel Assembly Mode K-
] 12 54.3 V4 and Solar Panel Assembly Mode
K 13 57.6 Antisymmetric Bending Mode of RCS and Global Torsion R
0 14 60.1 Solar Panel Assembly Mode -
- 15 61.1 Combined Mode of Top Deck and Solar Panel Assembly N
. 16 62.2 Solar Panel Assembly Mode N
. 17 62.7 Solar Panel Assembly Mode oY
~ 18 63.3 Solar Pane! Assembly Mode -
19 65.9 Solar Panel Assembly Mode ’
20 67.2 Solar Panel Assembly Mode
. 21 68.8 Solar Panel Assembly Mode .
5 22 70.2 Combined Mode of Vertical Decks, RCS and Solar Panel Assembly r
N 23 72.1 Combined Mode of Vertical Decks, RCS and Solar Panel Assembly -
',\‘ 24 78.9 Combined Mode of Vertical Decks, RCS and Solar Panel Assembly ‘.
*e 25 82.5 Combined Mode of RCS and V& ‘:-
*y 26 84.9 Solar Panel Assembly Mode B
27 85.2 Solar Panel Assembly Mode .
; 28 85.5 Combined Mode of Solar Panel Assembly and Vertical Decks V1 and V3
# 23 86.2 Combined Mode of Solar Panel Assembly and Vertical Decks VI and V3 )
- "
¢ i
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: Tabie | (continued)
) (b) Natural Frequencies and Modes
-y Frequency L
Vo, Mode No. in Hzs Mode Description
b ]
I 30 89.3 Combined Mode of Solar Panel Assembly and Vertical Decks V1,V3 and V&
) 31 89.3 Local RCS Deck Mode
N 32 93.9 Local Solar Panel Assembly Mode
i 33 94.3 Local Solar Panel Assembly Mode
34 96.9 Local Solar Panel Assembly Mode
. 35 97.4 Local Solar Panel Assembly Mode
4
§ TABLE 2
:: Free Vibration Analysis Results of IRS Subsystems
{using detailed finite element models with simply supported base conditions)
- (a) RCS Deck (With Fixed Base) (Total Rigid Mass = 103.9% Kgs)
'_ Frequency Total Effective Force (Mass)
: Mode No. in Hzs in Kgfand its Direction
-y 1* 55.22 20.56 (2)
. 2 63.24 0.0
3 73.46 91.81 (X)
> 4* 75.56 69.46 (Y)
. 5 87.25 8.34 (X)
(6) V2 Deck (Total Rigid Mass = 73.94 Kgs)
) Frequency . . Effective Force  Total Effe- ‘
f* Mode No. in Hzs Effective Mass Matrix (Kgs) Vector(Kgf) ctive Mass(Kgs) '
() (Y) .
o 1 51.25 0.843  -0.116  L743 2.47 7.24 .
-0.116 0.016  -0.239 -0.339 ,
: 1.743 -0.239 3.602 5.106
-.:: 2% 68.85 7.096 -0.913 9.876 16.059 36.34
. -0.913 0.117 -1.271 - 2.067
>, 9.876 -L270 13745 22,35
'~ I
) (c) V& Deck (Tota! Rigid Mass = 88.46 Kgs)
Frequenc Effective Force Total Effe-
- Mode No. r red y Effective Mass Matrix (Kgs) Vector(Kgf) ctive Mass(Kgs)
A in Hzs :
o (Y) ) '
o~ 1* 46.70 6.437 0.468  12.016 18.921 55.62 .
0.468  0.034  0.874 1376 :
12.016 0.874 22.43 35.320 X
™ 2 74.94 4,089  -2914  1.822 2.997 2.20 .
o -2.914 2.078 -1.298 -2.136 *
~ 1.822 -1.298 0.812 1.336
~ ;
. .
-~ .
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L)
. Table 2 (continued) A
: (d) Top Deck (Total Rigid Mass = 278.9 Kgs) K
Frequenc Effective Force  Total Effective L
. Mode No. cred y Effective Mass Matrix (Kgs) Vector (Kgf) Mass (Kgs) A
in Hzs .
. (2) (2) -
* o - ~ - [
) 1* 61.92 0.027 0.039 -0.866  -0.884 -1.684 103.74 .
X 0.039 0.056 - 1243 -1.268 -2.416 .
-0.866 -1.243 27.470  28.020 53.381 hE
-0.884 -1.268 28.020  28.590 54.458 |
- - : -~
2 - 94.76 1.057 0.719 0.569 0.993 ] 3.333 | 10.55 o
- 0.719 0.490 0.387 0.676 2.272 o
; 0.569 0.387 0.306 0.535 1.797 .
X [ 0.993 0.676  0.535  0.934 | [ 3.138 .
. (e) Bottom Deck (Total Rigid Mass = 72.5 Kgs) .
- Frequenc Effective Force Total Effective ,‘
: Mode No. L red y Effective Mass Matrix (Kgs) Vector (Kgf) Mass (Kgs) -
. in Hzs -
X (2) (2) .
. 1* 62.33 1.136 0.749 1.450  2.838 ] [ 6.173 ] 33.54 -
» 0.749 0.494 0.956 1.871 4.070
o 1.450 0.956 1.851 3.623 7.880 -
. | 2.838 1.871 3.623 7.089 Ll 5.421 -
N - - ™
. 2 91.35 70.031 -0.111  -0.239  0.125 7] 20,194 7] 1.21 -
X -0.111 0.399 0.858  -0.450 0.696 ..
- -0.239 0.858 1.845  -0.969 1.497 o~
» [ 0.125 -0.450 -0.967 0.506 | -0.786 | N
. * Modes corresponding to these subsystems are simulated in the dynamic models. t
.~ r
. 4
:. TABLE 3 ut
. ~
Y Characteristics of IRS Low Order Dynamic Model (Longitudinal) “
. (a) Element Stiffnesses (Spring Constant K for Spring and Bending Rigidity El for Beam Elements) ',:
: Element Element Type Element Stiffness Element Element Type Element Stiffness
o Number yp Number yp .
o 1 Linear Spring 7.6425E+8 N/M t Torsional Spring 1.0 E+6 NM *
2 Linear Spring 5.7007E+8 N/M 12 Torsional Spring 1.0 E+6 NM
3 Linear Spring 6.2600E+8 N/M 13 Torsional Spring 2.0 E+4 NM e
- 4 Linear Spring 1.4500E+7 N/M 14 Torsional Spring 2.0 E+4 NM g
- 5 Linear Spring 1.4500E+7 N/M 15 Beam 3.5945E+3 N/M N
- 6 Linear Spring 1.8000E+6 N/M 16 Beam 2.5264E+5 N/M .
. 7 Torsional Spring 1.0000E+6 NM 17 Beam 2,.5264E+5 N/M -
<, 8 Torsional Spring 1.0000E+6 NM 18 Beam 3.5945E+3 N .
) 9 Torsional Spring 1.0000E+6 NM 19 Beam 1.0452E+3
10 Torsional Spring 1.0000E+6 NM 20 Beam 1.0452E+3
e 21 Beam 1.04652E+3 N/M °d
"l 22 Beam 1.0452E+3 N/M 3
") '
- "
! .
oY | 1)
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Table 3 (continued)
(b) Nodal Masses
Node No. Mass in Kgs Node No. Mass in Kgs Node No. Mass in Kgs Node No.  Mass in Kgs
1 5.7 5 104.0 9 111,25 13 58.85
2 12,9 6 61.45 10 62.45 14 21.0
3 98.44 7 141.25 11 58.85 15 17.0
4 12.0 8 61.45 12 62.45 16 t7.0
(c) Mass and Inertia Properties
Total Spacecraft Mass in Kgs 876.02
Centre of Gravity Location in M Y = 0.0
(From the base of the spacecraft) Z = 0.8520
Moments of Inertia About Spacecraft XX = 1.1E+3
Base in Kg M2
1 = .
vy 0.9E+3
lyz = 0.0

(d) Natural Frequencies and Modes

Frequency .
Mode No. in Hzs Mode Description

1 36.7 Symmetric (about Z) vibration mode of V2 and V& in longitudinal direction.
Top and bottom decks bend symmetrically about Z axis.

2 37.4 Same as mode 1, except this is unsymmetric about Z axis. This is a fictitious
mode because of d.o.f. selected in the configuration (symmetric) of the
model.

3 46.5 RCS longitudinal mode.

4 60.9 Symmetric mode about Z axis involving top deck and slight motion of V2

and V4 in longitudinal direction.

TABLE 4

Characteristics of IRS Low Order Dynamic Model (Lateral)

(a) Element Stiffnesses (Spring Constant K for Spring and Bending Rigidity El for Beam Elements)

Eif::gt Element Type Element Stiffness E]:rr:;:rt Element Type Element Stiffness
1 Linear Spring 2.2500E+7 N/M 9 Beam@ 3.3854E+7 N/M
2 Linear Spring 2.2500E+7 N/M 10 Beam @ 3.3854E+7 N/M
3 Linear Spring 9,4400E+6 N/M I Beam 4.0149E+4 N/M
4 Torsional Spring 1.0000E+5 NM 12 Beam 4.0149E+4 N/M
5 Torsional Spring 1.0000E+5 NM 13 Beam 4.6293E+3 N/M
6 Torsional Spring 3.0000E+5 NM 14 Beam 2.6610E+4 N/M
7 Torsional Spring 3.0000E+5 NM 15 Beam 2.6610E+4 N/M
8 Beam 6.8670E+6 N/M l6 Beam 2.6610E+1 N/M

@ For these beams shape factor Ky = 0312
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' Table 4 (continued) E
; E
(b) Nodal Masses
: Node No. Mass in Kgs Node No. Mass in Kgs Node No. Mass in Kgs Node No. Mass in Kgs )
) “
1 5.7 5 81.3 9 80.46 13 69.5 .
2 54.2 6 36.34 10 55.62 14 12.0 "
3 50.94 7 0.5 11 0.5 15 69.2 r
4 144.6 8 74.85 12 74.85 16 65.28
> -
) (c) Mass and Inertia Properties :
Total Spacecraft Mass in Kgs 876.0 N ]
Centre of Gravity Location in M Y = 0.013 (
. (From the base of the spacecraft) Z = 0.852 ,7
X Moments of Inertia about lxx = 1.1E+3 -*
. Spacecraft Base in Kg M2 -
. | = .9E+3 .
. yy O E* \-.
N 1 yz = 0.1E+2
X (d) Natural Frequencies and Modes
. Frequency .
- Mode No. in Hzs Mode Description
1 25.7 Overall lateral (Y) bending mode. e
2 54.8 Lateral mode of V4. 3
: 3 57.8 Lateral mode of RCS deck. N
. “~;
4 72.0 Lateral mode of V2 (actually this is second mode of the deck .
which is simulated in the model because of its larger effective mass)
TABLE 5
N Matching of Important Frequencies of IRS Between Detailed and Low Order Models -
N ’
Frequency in Hzs
Mode No. -
. Detailed Low Order Models .
(RDe‘;ta.'rl:glerdel) Model Longitudinal Lateral Remarks x
- * Ref.Table 1 Ref. Table 3 Ref. Table &4 -
- ()] (2) (3) (4) (5} A
N 1 25.6 25.7 Y Global Mode. N
2 X Global mode. Not simulated. .
3 36.2 36.7 Z Giobal mode.
- 4-6 Solar panel modes. Not simulated. .~
. 7 46.5 46,5 RCS mode Z. ~
" 8-9 V1 and V3 modes. Not simulated. K
g 10-11 Solar panel modes. Not simulated. :
12 54.3 54.8 V4 mode.
: 13 57.6 57.8 RCS mode Y. ‘
s 14 Solar panel mode. Not simulated. .
) 15 6l.1 60.9 Top deck mode.
:‘: 141 "
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o Table 5 (continued)
; (1) (2) (3) (4) )
= 16-21 Solar panel modes. Not simulated.
22 70.2 First V2 mode. No significant effective
o mass. Not simulated.
K 23 72.1 72.0 Second V2 mode.
. 24-25 V2, V4 modes. No significant effective
‘ mass. Not simulated.
26-30 Solar panel, VI, V3 modes. Not simulated.
]| RCS mode. No significant effective
mass. Not simulated.
! 32-35 Solar panel modes. Not simulated.
\':
-~ TABLE 6
L3
Details of Results of Parametric Study for Change in IRS Payload Mass
N \ Present 20% Increase in 40% Increase in
-_".'. Details of study payload __payload mass payload Mass
A. Stiffness Calculations
e I. Mass of payload in Kgs 175.0 210.0 245.0
o 2. Height of payload CG in M
. from spacecraft base 1.364 1.394 1.424
. 3. Fundamental frequency in Hzs in
" lateral direction 25.7 24.5 23.3
N 4.  Fundamental frequency in Hzs in
n longitudinal direction
" - Present payload distribution 36.7 36.2 35.7
- Payload as uniformly distributed
n load on top deck plate 34.3 33.5 32.8
N 5. Percentage increase in main strut
-, area to raise longitudinal frequency
) to 36.7 Hzs 20% 30% 35%
A 6. Increase in spacecraft mass due
- to main strut area increase (in Kgs) 0.3 0.5 0.6
» 7. Percentage increase in top deck plate
stiffness (core thickness) to raise
’ longitudinal frequency to 36.7 Hzs 200% 200% 250%
8. Increase in spacecraft mass due
to top deck plate core thickness
.- increase(in Kgs) 1.5 1.5 2.5
. B. Strength Calculations
' 1. Percentage increase in top deck
- plate stress for longitudinal accelera-
- tion (present stress 3 Kg/mm? ) 0.0 20% 40%
v, 2. Percentage increase in top deck plate N
- stress for lateral acceleration N
¥ (present stress 1.25 Kg/mm?® ) 0.0 45% 95% 3
Q\ .
& 3. Percentage increase in cylinder stress :"
for longitudinal acceleration ™
- (present stress 4 Kg/mm? ) 0.0 4% 8% -
A3 4. Percentage increase in cylinder stress 4
x for lateral acceleration (present "
-’ stress 5 Kg/mm3 ) 0.0 8% 15% "
*" ‘::
X
, x
N o
-
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APPENDIX

GENERATION OF EQUIVALENT MODELS FOR
MODES OF A SUBSYSTEM

I. General expression for ‘effective mass' of
a normal mode of a base-fixed system

Let r and | refer to the 'base' and interior
d.o.f. of a structural system respectively. Here
'base’ is used to represent the support of a
system as well as its interface with another
system. In partitioned matrix form the equations
of equillibrium of the system when subjected
to prescribed base motion is given by;

-

Mmoom, I IXKEle ¢ X
rr rl L rl . r|
M Myl IS IS Sl | %

where M, C, K are structural mass, damping
and stiffness matrices respectively and X is
the displacement vector. The response at any
point in the structure can now be expressed

Caete e ) o

where @, are constrained modes and g are
elastic modes of the base-fixed system. &,
are obtained by solving K@, = 0 with a unity
matrix corresponding to base d.o.f. 8§ is prescribed
base displacement input and 7 are generalised
modal coordinates. Assuming that the eigen
vectors are orthogonal with respect to damping
matrix in addition to stiffness and mass and
substituting Eq. (2) in Eq. (1) and premultiplying
throughout by (&, ¢‘]qu. (1) becomes;

o T
M =M+ L' .0

m‘.r;+ c';]+ kY = -L.K...(‘t)

where fo is the base reaction force, Mg is the
mass matrix condensed with respect to base
d.o.f. (Guyan's reduction) and L are modal partici-
pation factors given by @gM® . m, c, k are
diagonal matrices denoting generalised mass,
modal damping ratio and stiffnesses of the base-
fixed elastic modes of the system. Eq.(4) actually
represents a system of decoupled linear equations
each corresponding to a single d.o.f. system
subjected to external loads. A typical i th equation
is given by;
Y] 2

mi”i + ci?}i + k"?]i:-LiS «(5)

where Li isi throw of L

Solving Eq.(5) for steady-state response condi-
tions, assuming the excitation to be harmonic,
we get;

L' Xl
n, = =t K § .{6)
my
where
2
H = (w/e )

ET Lot IR 2LE (W) ()
In EqJ7), 0 is the excitation frequency, w; is
the natural frequency of i th elastic mode of
the base-fixed system, €; is the modal damping
ratio (c;/(2mg wi ). Substituting Eqs.6) and
(7) in Eq«{3), the total base reaction force can
be obtained as:

f () = [M_+sM® H 18
c &7 i
l ..(8)

where M§ is called the ‘'effective mass' of
i th base-fixed elastic mode of the system and
is given by;
LT oL

ME = il 9)
i m

For more information on this topic Reference [5]
can be consulted. A procedure implemented
in ASKA for computing modal effective masses
is given in the form of a flow chart in Fig.10.

2. Generation of Equivalent Models for a Normal
Mode

Equivalent single d.o.f. systems can be
generated for a normal mode by matching its
natural frequency and effective mass, in the
case of systems with single base node. But
for systems with multiple nodes at the base
the ‘effective force' of a mode obtained by
multiplying the effective mass with unit base
acceleration is conveniently matched by a trial
and error method. Here this procedure is illustra-
ted with respect to V2 deck of IRS.

Step I: The V2 deck (see Fig.7) is first analysed
for its out of plane free vibration characteristics,
like natural frequencies, modes and modal effective
masses by applying simply supported boundary
conditions all along its edges and a point support
at the middle where the secondary struts joine
3 nodes A,B,C lying on the middle line of the
plate are chosen as base nodes to compute the
effective masses. The 'V' coordinates at these
points are thus taken into the 'r' set described
above and all other remaining d.o.f. into the
‘' set. In order to simulate the simple support
condition around the plate, a stiffener havinp
large bending and axial stiffnesses with zerc
torsional stiffness is attached to its edges.
The stiffener has negligible mass. Further at
A and C the translational do.f U and W and
rotational d.o.f. g are suppressed. The resulting
frequencies in 0-100 Hzs range and the modal
effective masses are given in Table 2(b).
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Step 22 Now the simply supported deck V2
is simulated in the mode! by a beam simply
supported at 3 points A,B and C. The properties
of this beam are adjusted to represent the
second mode of the deck for which the effective
mass and effective force vector are given in
Table 2(b). The effective forcesat the support
of the beam are given by Rp = -2.066,

Rg = 2235 and Re = 16.058, which when
added up give a total effective force for a
total effective mass in Y direction) of 36.34
Kg§ acting in a direction transverse to the
beam. The location of this force is required
to be estimated such that the reaction forces
at the supports match with its effective force
vector. For this purpose, it is assumed that
bending rigidity of the beam in the span AB
is (E) and in the span BC it is k(El). Using
Clapyron's theorem of 3 moments, the constant
k is found to be 8.673. The distance of the
point T where the total effective force acts
on the beam is computed approximately as
0.356 M from support C, the total length of
the beam ABC being 1.068 m. The beam configu-
ration thus arrived at produces reaction forces
at the supports given by Ry = 2.07, Ry = 22.35
and Ry = 16.06 and matches satisfactorily
with effective force vector.

Step 3: The final step involves estimating
the bending rigidity of the beam in both the
spans. At T the total effective mass of 36.34
Kgs is lumped and the value of (EI) is obtained
so that the beam has a natural frequency equal
to that of the mode it represents, i.e., 68.85 Hzs.
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When studying or designing a vibrating system, it is useful to have
a quick estimate of frequencies, especially the fundamental frequency.
The 1lower and upper bounds of the fundamental frequency provide the
approximation and range of this frequency. This paper presents a direct
method to get the lower and upper bounds of a fundamental frequency. In
contrast to currently used approaches, the lower and upper bounds can be
obtained simultaneously by this method. The method is applicable to

fat b,

= discrete and continuous systems. For discrete systems this procedure
o involves substituting an assumed mode shape into the equations of
f motion, and then the bounds of the fundamental frequency are obtained by
;_ the enclosure theorem. For continuous systems, an initial distributed
- load is assumed instead of an initial modeshape. A simple formula for
= estimating the bounds of the fundamental frequency of a continuous beam
4 is derived in this paper. This technique is especially appropriate for
- a system having a first modeshape which is easy to estimate. Several
", examples are presented to illustrate the method.
y tive procedures. The original Dunkerley's or
- INTRODUCTION Rayleigh's relations usually serve as the first
> step of the iterative procedure.
It is commonly accepted that the lower
- bound of the fundamental frequency of a vibra- The direct method presented here involves "
ting system can be obtained using Dunkerley's substituting an assumed modeshape of a discrete '
- Method [1] and the upper bound can be found by system or an initial distributed load acting on 1
i means of Rayleigh's Method [1]. Since the a continuous system into equations of motion. -
A results calculated using these methods are The lower bound and upper bound for an eigen- o]
:. sometimes not sufficiently accurate, both value can then be obtained at the same time. A
W improved Dunkerley's and Rayleigh's methods These bounds for the fundamental frequency are “
have been developed (2}, (3], [4], [5]. In calculated using an iterative procedure and *
X general, these improved methods involve itera- their accuracy can also be improved, as long as &
e ':l
l. 'Q
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o
K. the initially assumed modeshape is not ITERATION TECHNIQUES AND IMPROVED
g orthogonal to the first mode of the vibrating RALEIGH'S AND DUNKERLEY'S METHODS
o system. This method is quite efficient for a
\ vibrating discrete system when a rough estimate The Inverse Iteration Procedure
of the first modeshape is available. For a The natural frequencies of a vibrating
continuous mass system where a distributed load system can be found by solving the eigenvalue
-: is assumed, a simple and useful formula for problem
. estimating the lower bound of the fundamental
::. frequency is obtained in the latter part of Kx = AMx (1)
- this paper. Examples are presented to illus-
" trate this direct method. or, equivalently,
NOMENCLATURE x = laMx (2)
4
A M - mass matrix where:
:' K - stiffness matrix K = stiffness matrix
- a - flexibility (influence coefficient) M = mass matrix
- matrix
x = eigenvectors
. D - dynamic matrix
- o = influence coefficient
:-: X i - eigenvector in iteration procedure (flexibility) matrix
.:.' A - actual modeshape for discrete system A= “2, the frequency parameter. P
R B
~ Y i(x) - actual modeshape for continuous An inverse iteration procedure using an assumed P
- systems eigenvector x(o) would be
.'_ y(x) - modeshdpe for continuous system in x(l) = uHx(o) (3a) R
_:. iteration procedure
i
. X - eigenvalue, the frequency parameter ) 1)
= x = aMx (3b)
- xl - fundamental frequency parameter :
o by - upper bound of X\ -
: u 1 x(k) - uHx(k 1) (3¢)
. AL - lower bound of )l x)
- For the first mode, x will approach the
", XR - Rayleigh's quotient first modeshape, and the ratio of corresponding
y (x) (k-1) ]
b XT - Timoshenko's quotient elements of x to x will approatzt;)the
first eigenvalue Xl {6]), provided that x is
t
. x[) - lower bound of X1 using Dunkerley's not orthogonal to the first modeshape.
. formula ‘
From a physical point of view, the .
4 A - lower bound of Xl using improved iteration procedure seeks the displacements of '
D Dunkerlev's formula the vibrating system due to the inertia force K
e nkerley s ormu generated by the motion of the system in an -
-6 's functio assumed modeshape. Thus, a modeshape is
- a(x,u) - Green's function approached step by step finding the kth .
- -y ' odul displacements due to the inertia force N
- E oung s modulus associated with the (k-1) displacements. U
- ~
by I - moment of inertia of beams The Improved Rayleigh's Method N
- - fb ith variable cross N
- w(x) ::::ign eams W ariable The improved Rayleigh's formula for the y
fundamental frequency is (3] (8] i
- p - mass per unit length of uniform T
:_ beams Xu = 5 %) -
o X Mx B
.~ q(x} - distributed load acting on beams where x is x(K) obtained by the iteration '
.- !
o £ - fundamental frequency procedure. Thus ‘g
iy
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’ mental eigenvalue )\, with increasing k. From X
0 1x®)7T k™ ) o o oy ! 8 X
k),T k qs - ~;
u lx( )] H[x( )] N
When k = 0 in Eq. (5), x‘(l°) is the usual px°) = % x(0) .
Rayleigh's quotient g -;
2y _ y2 (o) (0) _pl (o) _1_  (0)

With increasing k, x(k) approaches the x =D" x = De*Dx =Dy x = F x :
first modeshape, and l(k) should approach the r
u Then 14

fundamental frequency. Since Eq. (4) is based
on a particular energy principle, X‘(,k)’ ap- k) o pktl (o) Ti—l <) ’
proaches \1 from the high side. It is an upper A ;
bound. K@ L e an -
R X 1 .
Timoshenko's quotient Ap (7] (8] s so that .
slightly different from X‘(ll). In this quotient v
(N 5.0 S W O S
the x(o) is used for computing the maximum | b K+l I | =0 12) :
kinetic energy and x(l) is used to compute the A .
potential energy (4]. This leads to and N
¢) .
XR > x,r > \u (6) K+1 no -l N
Then the result from Eq. (5) is closer to )‘1 Xm =(t Dﬁ ) a3 '
than Timoshenko's quotient. i=1 -
The Improved Dunkerley's Method where ), is th eigenvalue from the improved -

Dunkerley's method.

Dunkerley's formula is usually derived

from . With an increase in k, XID will approach .
Dx - $x=0 o)) Ay, but from below. It is a lower bound.

with D = aM, the dynamic matrix. The character- The improved Rayleigh's and Dunkerley's -
. istic equation is the polynomial methods are approximate methods for comwputing -
o the fundamental frequency. The exact value is -
. approached from the higher and lower sides, ]
b o | bx - 1, | = o respectively. For large  systems, the -

A computation involved in Dunkerley's method

makes it impractical. An alternative,
From the theory of equations, efficient method to obtain the lower bound is )
desirable. K
N 1 .
- Ay = 3 (8) It can be shown that lower and upper -
" t Du bounds can be derived from the iteration N
o i=1 procedure itself. This method for computing .
a both the lower and upper bounds directly from .

d where the iteration procedure will be referred to
here as the direct method. It is also an .
- D,, = diagonal elements of matrix D approximate method. The exact value of X, is %
3 i ! .
. _ approached from both the higher side and lower -
% \p = lower bound from Dunkerley's formula. side rather than just from one side. 3
< The improved Dunkerley's formula presented DIRECT METHOD F s .
':; in [2]) [S] can be also derived from an itera- OR DISCRETE SYSTEMS ¥

tion procedurs. Set In the direct method, the eigenvalue

x) . Dk (0) 9 bounds are computed directly from Eqs. (2) and
. X x 9 (3). Begin with an assumed initial eigenvector 9
. substitute x(k) into Eq. (7) x(o) and substitute it into Eq. (2) N
: C 3
L Dx(k) .1 x(k) =0 (10) P =2am x @ a4 v

: A

»

In Eq. (10), x(k) should be closer to the first
modeshape and ) should be closer to the funda-

[
.

|
¢
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Define a vector X(o) with elements x§°)

[ (0) ]
o
x1
(o)
x2
10 2
(o)
Y
y(0)
n
O] %)
v - i
3 N ON L as
3 b
j=1,2. . .n
So that the X;o) is the ratio of the cor-
responding elements of vectors x(o) and x(l).

If x(°) is an actual eigenvector gi. then

all of the x§°) in the vector 1(°) will be the
same. That is,

(o) _ (o) _ =13 o
AT =D, SEA )

where )\, is the i th eigenvalue.

i
(o)

In practice, x will only approximate an

X(o)'s will differ.

According to the enclosure theorem (3}, when M
is a diagonal matrix with positive elewments,
there will be a true eigenvalue )\ that satis-
fies
(o) (o)
x-in <A< xmax

eigenvector and the

(o) (o)
where x-in and xnax are the smallest and

largest elements of the vector X(o)

tively.

, respec-

When the iteration procedure is employed,

we can get a series of X(k)

LSRN i i APl i g Wy LSl it i et

x(k)
(k) _ J
Y (k+1) an
x
J
k=1, 2,
and (k) < \ < X(k) (18)
nxn max
(k) (k)
with xmin and xmax the lower and upper bounds

of the fundamental frequency, respectively.
2 ana 2

max
with increasing k and, hopefully, will approach
zero. One important implication of the results
is that both the upper and lower bounds of an
eigenvalue can be obtained during each step of
the inverse iteration procedure for computing
eigenvalues. This fact does not appear to have
been used in eigenvalue solution routines.

The spread between will decrease

Applications and Comparisons With Other Methods

The direct method for discrete systems
will be demonstrated and compared with the
other methods considered previously.

Example 1. Shown in Fig. 1 is a 3DOF
system. There are three concentrated masses
connected by springs. The masses and stiff-
nesses are indicated on Figure 1. The matrices
M, K, and a are

.
[1 0 o
M=n 0o 2 0
0 0 3
3 -
5 -2 0 1
K=k -2 3 -1
0 -1 1
- -
S N | 2 2 2
6k 2 55
2 511

Having assumed

the upper bound, 0.176 k/m, and lower bound,
0.1463 k/m, of X are obtained for this system

using Eq. (15). The results improved greatly
with the next iteration step (k = 1). See
Table 1. The results obtained by using
Dunkerley’s and Rayleigh's methods are also
listed in Table 1. The initial vector used in
Rayleigh's method is the same as in the direct
method. All the results improve when k = 1.
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when it is exactly the same as the actual
> eigenvector.

Fig. 1 -Example 1 3DOF System

Fig. 2 - Example 2 2DOF Beam

Exawple 2 is a beam with two concentrated
masses (Fig. 2). The segments are assumed to

be weightless. The results obtained by using The Effect of Initially Assumed Eigenvectors

the three methods are shown in Table 2. I
An assumed initial vector can be expanded ,
Looking at only the accuracy, by comparing in the actual modeshapes X., X, . . .X ..
the results in Tables 1 and 2, would make it 17 =2 -n .
difficult to choose the superior method. For x(°) =c. X, +c. X. +...+¢c X "
example, the accuracy of the lower bound =1 2=2 n-n :-
derived by Dunkerley's method depends on a ;
property of the vibrating system, the spread of x X.. . . .x c
the fundamental frequency )\, and the next 1 "2 in 1
x Xoy - - X c
frequency \ Also, the choice of the initial 21 22 2n 2

2’ =

vector x(o) affects the bounds derived by
Rayleigh's method and the direct method. .
However, the direct method has the Xi1 *n2 © ° *mn ¢
characteristic that both bounds are found in
the same step. This is its advantage.
(19)
When the initial estimated eigenvector h X = . =
does not have elements that are opposite in where & (%37 %1 - - xnll - Xy =[xy %p
sign to the corresponding elements of the first L. T 4 is the displ t at :
modeshape, then both the lower and upger bounds ﬂzl an %33 8 he displacement at point
can be obtained by the direct method in the i of the jth modeshape. Therefore, the
initial step (k = 0). Otherwise, the lower displacement at point i of the initial vector
bound becomes negative when k = 0, which is not xf°’ i
useful. However, the upper bound can always be
derived, and a useful 1lower bound can be n
calculated with a larger k, except when the (o) _
x P ¢, x (20)
approximate vector is orthogonal to the i j=1 S
fundamental eigenvector. We do not need the
lower bound in this case, since this occurs Substitute (19) and (20) into Eq. (3) to get
Table 1 - Lower and Upper Bounds of Fundamental
Frequency of the 3DOF System Shown in Fig, 1 ~
v
Number of Lower bound of )\1 Upper bound of )\1 Exact 'i
iteration value :
€ Dunkerley's Direct Direct Rayleigh's of )\1
Method Method Method Method H
k=0 0.1333 k 0.1463 % | 0.176 £ | o0.1579 k 0.1546 X .
m m m m m -
Deviation -13.7& ~5.4% 13.82 2.X -3
e
k k k k k K
k=1 0.1532 = 0.1540 | 0.1548 - 0.1546 0.1546 o ]
"A
Deviation -0.9% -0.382 0,13 0.00% o
X
l.‘
)
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M-y p,
=1 4

x (21)

ij

If every element of vector x(l) has the
same sign as the corresponding element of
(°), the ratio xil)/xio) should be

greater than 0. Then, from Eqs. (20) and (21),
the following inequality should be satisfied

vector x

n
xio) jilcj xij
x(l) = n >0 (22)
i ED,,c,  x
j=1 iy 73 T4j

The inequality of Eq. (22) indicates that x(°)
is near a modeshape. The next iterative step

will indicate if x(o) is near the first mode-
shape by using the inequality

1)y _ () (o) _ (o)
x-ax Xmix'x < xmm( xmin (23)

If Eq. (23) is not satisfied, the iteration
procedure should continue until

(k) _ (k) (k-1) _ ,(k-1)
Xmax xmin < xmax xmm (24)

Generally, Eq. (23) is easily satisfied.
For the beam shown in Example 2, when &:l/c2 >

6.6%, the inequality of Eq. (23) is satisfied.

DIRECT METHOD FOR CONTINUOUS SYSTEMS

The direct method can be applied to
continuous systems. The besm in Fig. 3, which
has a continuous mass, will be wused to
demonstrate this.

Fig. 3

The equation of motion of this beam is

y(x,t) = - /' a(x,0)¥(u,t) m(x) du (25)
o]

where a(x,u) is Green's function.

Assume y(u,t) = y(u) sin wt (26)
[ 2

Then y(x) =X J a(x,u) y(u) m(u) du 27)
o

Once an initial function y (Xx) is assumed,
the iteration procedure appears as

This conclusion comes from Eq. (22), by letting L4
the numerator and denominator be greater (and yl(x) =J a(x,u) Yo(“) m(u) du
less) than zero at the same time. There will o
always be some negative elements in the higher
modeshape; therefore, the coefficient of c.  is L
1 yz(x) =J a(x,u) y,(u) m(u) du
much larger than the coefficients of Cys Cgevnn o 1
It can be seen that Dij in Eq. (22) affects the
ratio cl/cz. When the diagonal elements Dii .
are much greater than the other elements, the t
ratio c,/c, will increase. V&) =1 alx,u) y_;(u) p(u) du (28)
o
Table 2 - Lower and Upper Bounds of Fundamental
Frequency of the 2DOF System shown in Fig. 2
Number of Lower bound of 01 Upper bound of wl Exact
value
iteration Dunkerley's Direct Direct Rayleigh's of 0y
Method Method Method Method
k=0 7.7942 b 6.647 b 9.165 b 12.47 b 8.0498 b
Deviation -3.2 -20.22 13,852 54.%
k=1 8.04096 b 7.966 b 8.1327 b 8.0776 b [8.0498 b
Deviation -0.12 ~1.042 1.0% 0.35%
1 Bl 1 E1I
bes — ——— b= —
12 [ 22 P
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It can be proved (Appendix) that

Li =y 29

k*: Y (%) 1 ®© (29)
Y. q (%)

Lim —"(-1—)— =\ (30)

ke Tk'X

During the iteration procedure, X(t)(x) is

a8 function of x rather than a constant.
According to the enclosure theorem

min [X(t)(x)] <, < max n®a 6n

Since Green's function a(x,u) and its
integral are difficult to compute, the fol-
lowing procedure will be used. For a beam with
variable cross sections the differential
equation of motion is

a2 a2
S LEL ) =m0y (32)
dx dx

Although an initial yo(x) can be assumed and

substituted into Eq. (32) to get X(o)(x), it is
more convenient to begin with an assumed

initial distributed load q(o)(x).

o d2 dzx
q (x) = 3 {E1 2 ) (33)
dx dx

and from Eq. (32)

(o)

(o) = a_"(x)
X () m(x) y (x) (34)

where yo(x) is the deflection of the beam due
to the load q(o)(x).

The next step is to let the distributed
load ¢V (x) be m(x) y (x)

aP0 =m0 y (0 (35)
Then X(l)(x) - q(l)gg) = yo(x)
m(x)y, (x) ¥, (x)
(x)
2., . N
V) = 7,0 (36)
(k) - yk-l(x)
VU = ¥, (%)

After k iterative steps, Xl should satisfy

ainn® () < 2 < max(3® )

p LI Tl YL R
. .'.'-’»'-'1’-
W e e e e

PRI i i e~ Polen Sunhall e v At N PLENT

Applications

The application of the direct method for
continuous systems will be demonstrated in the
next three examples. The simple beam with a
uniform cross section used in the next example
is shown in Fig. 4. Since it is a uniform
beam, the initial load is assumed to be uni-
form.

EI

&« &

T <@

——————— Yo(®

\_/ YI (X)
Fig. 4
q(o)(x) = q = constant
Then y () = 33= (%x - 202 + 5%
Substitute yo(x) into Eq. (34)
@ ... _ a9 _ 24EI
L < 3 3.4
PYo p(R7x - 2&x74x )
where E - Young's modulus

I - moment of inertia
p - mass per unit length

From Eq (31).

8§1—<X<.
4 1
pf

In the next step, let qtl)(x) be proportional
to yo(x)

76.

(6] = - _pa 3, 3 4
q (x) = p y (x) =557 (07x - 20x” + x)
7 6
= qXp X L x
y,(x) = 22 (3 -5
24E°1° 60
3.4 52,17 .7
+ 4 27x - x4 23 )
(1 Yo (X)
)y =
x ¥, (0
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6)]
A max = 98.8235 EL
4
1)
(1)
A min = 96.55 EL
4
pl
96.55 EL < \_ < 98.8235 EL
4 1 4
pt pR
The exact value of \1 of the beam is 97.4091 Elz
pL

The lower and wupper bounds of the
fundamental frequency and their deviations are
listed in Table 3. It should be noted that
since there are rigid supports in this example,
the upper bound obtained in the first step is

L
7.5 m ' e

a. . : q, -TJS N/m

) q = 1 N/m

y y y y

b.

'\ lyg (1
c.

BN SRSt i e At AR SR AR~ RO R6 Wl g Sy iy 00 S =

». This is not the case when the beam is
supported on elastic supports.

The next example is a beam with a variable
cross section which is supported on three
elastic supports. The initial load is assumed

to be proportional to the mass, as shown in
Fig. 5(b).

1 N/m ©

A
»

IA
v

q(o)(X) = {
1.45 N/m 5 < x5 7.5

The deflection of the beam shown in Fig. 5(c¢)
was derived by using a computer program. The
maximum deflection is

-3
[yo(x)]max =0.1049 x 10 " m

) (o)
x(o S| ) - 471,712 (Rad/sec)?
Lower m(x) yo(x) min

d =6x 10'2 m

d2 =7x10 " m

Py = 21.87 kg/m

= 31.67 kg/m
Ml = 154.9 kg

M, = 100 kg

k., = 3.5 x 104 N/m
k., = 3.5 x 10* N/m
k, = 4 x 10° N/m

E=2x10 Nn

1
2
3

Fig. 5 - A Beam with Three Elastic Supports
and Variable Cross

Table 3 ~ The Lower and Upper Bounds of the Fundamental

Frequency of the Beam of Fig. 4

Frequency fl cycles/second Deviations
flL f1L exact f1V flL f1U
1.5638 l EL | 15708 |BL | rse2a |EL | ouxm | oz
pl v pl v pl
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fio) = 10.4 cycles/sec. 2@ ( __L)J&_. ) 9.8 x 100 :
ower u m(x) yo(x) max 0.5229 x 31.67 *
(o) .
o) o X = 8724.254 (Rad/sec)? = 591.7789 (Rad/sec)?
upper m(x) y_(x) |max
° £, = 12.459 cycles/sec ’
Thus :
f(o) = 14.864 cycles/sec X
upper 5.128 < f, < 12.459 cycles/sec. R
10.4 < f1 < 14.864 cycles/sec
The exact value of f. can be computed to be

The exact value of f1 is 11.58 cycles/sec

as calculated by a transfer matrix program. In
this example both lower and upper bounds of the
fundamental frequency are obtained in the first
step.

When the beams have concentrated masses,
the initial load should be assumed to be made
of not only a distributed load, which is
proportional to the continuous mass, but also
concentrated loads which are proportional to
the concentrated masses.

The next example is a beam with two
concentrated masses as shown in Fig. 6. The
deflection of this beam due to its initial load
was derived with a beam analysis program and
the lower and upper bounds of the fundamental
frequency found using Eq. (31) are

1
5.978 cycles/sec.

The Effect of the Initial Load

It is evident that the closer the initial

assumed load q(°)(x) is to the actual inertia
force generated by the first mode, the better
the results. When there are no in-span sup-
ports, there should not be any nodes in the
first modeshape. Therefore, we can assume that

q(o) (x) remains in the same direction and the
magnitude is proportional to the mass of the
beam. In this case, the lower and upper bound
of the fundamental frequency can be derived by
using only Eq. (34) and inequality (37), where
k is equal to zero.

For a beam with more than two elastic

supports, the q(o)(x) can be assumed as was

x(o) = ( (0 X = 9.8 x 103 described above. But, it should be noted that
L m(x) y(o)(x) min 0.4313 x 21.87 when the stiffness of the in-span supports
2 increases, the deflection, due to q(o)(x) for
which all loads are in the same direction, can
= 1040.368 (Rad/sec) be in opposite directions on some parts o'f the
_ beam. In this case, the lower bound will be
fL = 5.128 cycles/sec negative when k is zero. Of course. the
Table 4 -~ The Lower and Upper Bounds of the
Fundamental Frequency of the Beam
of Fig. 5 from lst Step
Frequency f 1 cycles/second Deviation
f £ exact f1u i f1u
10.4 11.58 14.864 -10% +282
Table 5 - The Lower and Upper Bounds of the

Fundamental Frequency of the Beam in Fig. 6

Frequency f 1 cycles/second Deviation
£ 1L £ 1 exact £ 1U £ 1L flU
5.128 5.978 12.459 =14.2% | +10%
163

R e eV W LWV, R

AR i LA e

ALY o)

-

' .o -




TOTRT RIS RN
AN

25k . ok TP nd ST 4 R ] ag” d 3] 4 That L EAET AL - A W Ny O YO ool " # e .y TR :
. v
d )
M 2
: dl r—lw ¥ .
1
-
< -
ky n‘»’,k3 d1-5.9x10:m ,
2 m kz d2-7.1x104 m :
4 m kl = 3,5 x 10 N/m :
4.5 m k, = 7 x 10° N/n
Nl Sa L k3 = 3,5 x 101' N/m f
2 M 7.5m b, = 21.87 ke/m !
: a. Py = 31.67 kg/m
: 7.08 o 4.75 n E=2x 10 §/m
1.45 N ©) ¢
q (x) '
b. ;
' Fig. 6 - A Beam with Concentrated Masses ;
' positive bound can be obtained using the is similar to that in Fig. 5. The deflection :
iteration procedure (Egqs. (35) and (36)), but of the beam changes with increasing stiffness '
. it is much better to change the assumed load k2 of the in-span support. When k2 =5 x 106 )
' q(o) (x) into a load containing components in N/m, as shown on the last line of Table 6, the h
- different directions. This is illustrated by deflection y (x) near the in-span support is in i
g the example in Table 6, which uses a beam which ° 3
: TABLE 6 The Influence of the inspan support ¢
Stiffness on the Initial Load
- 4, o d =5.9%10%m .
- *l —’—ﬁ d =7.1x10%m
4 b k., ¢ ' P‘ =21.87 Kg/m \
” Vol Sm et ks Pp=31.67 Kg/m
2 I 7.5m i k(= ky=4.5x10YNmM b
Frequency cycles/sec.
. (x) (x) f
. k2 % Yo Error ;
K N/m Assumed load Deflection frower  exoct fupper ] of 0
: N/m m lower 2
S o.msxlﬂ -
2 7 x10* —T—, | 040 11.580 14864 |-10.2% -
- 1 1.45 :
. vy it 0.7063x10™* ,
- 3 x108 12.675 13.15) 25908 |- 3.6% .
- r.
: 59811074 i
2 4 x10° 13.774 14835 | 20345 |- 7.2% :
ey
. B:‘Il__i 8151 X10°
5 x10° T C&: n.808 | 13.492 © -215%
45
1 1.45 ‘
? 5 x 10* e a| -® 14.823 o i
3 164




U B A Kb | G i~ e S i g om g s apr g e S AL LR

the opposite direction; then the lower and
upper bounds become indefinite. But, when the

initial load changes as shown on the fourth
line of Table 6, the lower bound is derived
when k 1s zero. The upper bound will be
obtained in next step, when k = 1, as
mentioned in the simple beam example.

From all the examples of the continuous
system, the lower bounds of the fundamental
frequency obtained in the first step of the
direct method are much better than the upper
bounds .

CONCLUSIONS

All the methods discussed here -
Rayleigh's and improved Rayleigh's methods,
Dunkerley's and improved Dunkerley's methods,
and the direct method - involve iteration
procedures. The direct method is a technique
by which both lower and upper bounds can be
derived by the iteration procedure itself.

The direct method appears to be an effec-
tive method for estimating the bounds of the
fundamental frequency of a vibrating system.
The advantages of this method are that both
bounds can be obtained at the same time. The
direct method is more efficient for a system
for which a rough estimate of the first mode-
shape is available. Since many modern
eigenvalue extraction routines use some form of
the inverse iteration procedure, an important
implication of the direct method is that both
upper and lower bounds can be obtained during
the iteration process. Existing routines can
take advantage of this fact.

For continuous systems it is more con-
venient to assume an initial load instead of an
initial modeshape, and the bounds can be
derived by computing the deflection due to the
load. The lower bound for beams derived in the
first step of the direct method seems much
better than the upper bound.

ACKNOWLEDGEMENT

The work of W. Pilkey was supported by the
Office of Naval Research, Arlington, Virginia.

REFERENCES

1. William T. Thomson, Theory of Vibrations
with Applications, Prentice-Hall, Inc.,
Englewcod Cliffs, NJ, 1981.

[ &)

A. Rutemberg, "Dunkerley's Tlormula .and
Alternative  Approximations,”  Journal ot
Sound and Vibration, 1975, \ol. 39(4),
350-3351.

3. S. Crandall, Engineering Analysis, McGraw-
Hill, New York, NY, 1956.

4., Ray W. Clough and Joseph Penzien, Dy-
namics of Structures, McGraw-Hill, New
York, NY, 1975.

ata

165

‘l'. I‘. l..
SN
PR PO PR P AL

5. L. S. Jacobson and R. S. Ayre, Engineering
Vibrations, McGraw-Hill, New York, NY,
1958.

6. Zheng Zhaochang, Mechanical Vibrations (in
Chinese), Publishing House of Mechanical
Industry, Beijing, China, Second Edition,
1982.

7. C. H. Popelar, "Lower Bound for the
Buckling Load and the Fundamental Fre-
quency of Elastic Bodies," Journal of
Applied Mechanics, Vol. 41, 151-154, 1974.

8. A. B. Ku, "Upper and Lower Bound Eigen-
values of a Conservative Discrete System,"
Journal of Sound and Vibration, Vol. 53(2),
183-187, 1977.

9. Stephen Timoshenko and J. M. Gere,
Theory of Elastic Stability, McGraw-Hill,
New York, NY, Second Edition, 1961.

APPENDIX

An assumed initial modeshape yo(u) can be
expanded in the actual modeshapes Yl, Yz e

y,(uy = ¥ c,¥ )
When the iteration procedure is employed, the

modeshape in the kth step will be

t
Y (x) = i e (x,u) ¥ _, () m(u) du 2)

Substitute (1) into (2); when k =1

- t
Yl(x) =3 [ a(x,u) ciYi(u) m(u) du (3)
i=l o
and
[ 2
Yi(x) = Xi i a(x,u) Yi(u) m(u) du (€3]

Substitute (4) into (3)

» ci
Y(x)=% = Y. (x) 5)
1 = M1

The next iteration step will be

t
yy(x) =/
]

a (x,u) yl(u) m(u) du
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APPROXIMATING DYNAMIC RESPONSE IN SMALL ARRAYS
USING POLYNOMIAL PARAMETERIZATIONS
AND RESPONSE SURFACE METHODOLOGY

K. P. White, Jr, H. C. Gabler, III, and W. D. Pilkey
School of Engineering and Applied Science
University of Virginia
Charlottesville, Virginia

This paper describes a method for deriving an approximate algebraic model which
defines the periormance of a dynamic system as a function of ils response para—
meters. The method extracts essential response information from large amounts
of test data or simulation output and stores this information in a single, small,
two—dimensions! array. This dala compression provides for highly efficient
storage of essential information in a form which is especially convenient for
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subsequent use in analysis,

experimentatlion, model validation, or design
optimisation, The method is illusirated by an application Lo passenger—vehicle
crashworthiness design optimisation,

INTRODUCTION

Managing the large volume of experimental and/or
simulation date required for design studies is a
significant problem in many applications. This paper
describes a method for desling witk such problems
that has proven successful in vehicle collision re—
search. The method involves (1) characterising the
continuous response of a dynamic system in terms of
manageable set of performance measures and (2)
deriving an approximate algebraic model which defines
each of these performance measures as a function of
selected design parameters. In this way, essential
design information can be extracted from large
amounts of data and represented as a single, small,
two—dimensional array. The resulling compression
permits the efficient management and storage of
esvential design information in & form which is
especially convenient for subsequent use in"analysis,
experimentalion, model validation, or design
optimisation,

In the following sections, we first define the
problem addressed in this paper. Second, we describe
the general method for developing polynomial para-
meterisations of deceleration time histories and
demonstrate the application of this method in vehicle
oollision research. Next, we describe the general
response surface method and its application in pas-
genger vehicle design optimisation studies,
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NOMENCLATURE

a{t) : simulated vehicle aocelerstion
a; : polynomial caefficient

by : polynomial coefficient

b; : polynomial coefficient

by : polynomial coefficient

by : polynomial coefficient

f, :i-th response surface component
f : vector-valued response surface
p™(t) : approximated vehicle deceleration
p"Yt) : approximated vehicle velocity
p(t) : approximaled vehicle displacement
t. : lime to deceleration centroid

ta : lime to maximum crush

vy : velocity at maximum crush

v, : rebound velocity

¥o : initial velocity

x; : j-th predictor variable

x : vector of prediclor variables
x™(t) : actual vehicle acceleration
x'(t) : actual vehicle velocity

x(t) : actual vehicle position

y; :i-th response variable

y : vector of response variables
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Problem Definition

The specific application considered in this
paper and used to demonstrate the general method
arises in passenger—vehicle collision research. The
basic problem is that of summarising information
which defines the dependence of the dynamic response
of a vehicle during a baerrier collision on the levels
of a set of structural response parameters. In this
paper it assumed that complete information on the
significant structural behavior of a vehicle, in
terms of the impact of that behavior upon occupant
dynamics, is contained in the deceleration time
history or crash signature of the vehicle occupant
compartment. This assumption is generally accepted
and, indeed, it is standard practice to describe the
dynemic response of a vehicle in laboratory crash
tests by the deceleration of a fixed point on the
vehicle,  While the ultimate relationship between
vehicle deceleration and occupant injuries in actual
highway accidents is impossible to prove (or dis-
prove), good correlation can be shown belween
deceleration and standard occupant dynamic response
measures in both laboratory teste and computer
simulations, In addition, other correlates with
ooccupani response measures (such as impact velocity,
abeolute velocity change, and vehicle orush) can be
derived from the vehicle deceleration profile. See
for example White, e/ a/ [1] for an cor-
relation analysis of vehicle and dummy response
measures using test data for twenty 1982 Citations;
Huang, ¢/ a/ [2}, for an snalysis of relationship
between vehicle deceleration and simuiated occupant
responses, and Langwieder, ef a/ [3], for a
comparison of passenger injuries in frontal col-
lisions with dummy loadings in equivalent
simulations,

Data implicitly describing the relationship
between crash signatures and selected vehicle re—
sponse parameters can be derived from computer
simulations of collisions under a range of different
crash conditions. Data from several hundred com-
puter simulation .uns are required to complete the
simulation experiment design, however, in order to
insure that the relationship is adequately defined.
For the current application, a compact representation
of the information contained in these dats is
required for efficient storage and retrieval In
addition, the relationship defined by these data must
be stored in an explicit form which is convenient for
use in subsequent design optimisation studies,

The original design/response data for each simu-
lation run include the simulation input parameters
defining the value of each collision parameter and
each design parameler and the corresponding
(digitised) occupant compartment deceleration profile
derived from the simulation output, [Initisl oom-
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pression of the data is achieved by replacing the
4000 or more [at)t] dats pairs (where a{t) is the
acceleration of the vehicle occupant compariment)
defining the complete simulaled deceleration profile
with only two parameters. These two parameters,
together with the oollision conditions, define a
polynomial approximation of the original waveform
and represent summary performance measures for the
complete vehicle dynamic response.

The implicit relationship contained in the
summary design/response data from this initial step
is subsequently converted into an explicit model of
the relationship by applying response surface method-
ology. For each of the vehicle response parameters,
a polynomial approximating function is developed by
stepwise, multiple, linear regression on the
design/results data. While the purpose of this step
is to derive an explicit relationship convenient for
optimization studies, a second and equally signifi-
cant compression of the data is also achieved.

The end result of this two—step procedure is a
single, two-dimensional array containing the desired
information from & large number of vehicle crash
simulations. Bach row of the array corresponds to
one of the parameters of the polynomial approxi-
mation of the original crash signatures. Two columns
sre required for each parameter of the polynomial
approximation of the corresponding row parameter,
one for the coefficent value of the regression
equation and a second for the code identifying the
corresponding predictor. This convenient compression
of the data represents, in effect, a simple algebraic
model relating the collision response of the vehicle
to its structural design.

Parameterisation of Dynamic Response
using Polynomial Approximations

To apply the method described in this paper, the
continuous response of a dynamic system must first
be characterised in terms of a manageable set of
parameters. This is a universal problem in experi-
mentation and simulation. Parametric representations
of continuous time histories are commonly used ag
time—domain performance measures and in establish~
ing time—domain performance specifications, Such
characterisations are also essential for the sta-
tistical analysis of experimental dats and simulation
output, for empirical and model-based sensitivity
analysis, and for experimental and simulation optimi-
sation. Moreover, such simplified descriptions of the
dynamic response permit the efficient storage of
large amounts of test data or simulation output for
subsequent use in experimentation, modeling, analy—
gis, validation, or design optimisation,
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Although there are many means available for
achieving the desired parameterisation, a general
approach is to use the coelficients of a polynomial-
in—-time which has been fit to the actual dynamic
reponse variable (here, the crash signature a(t)).
This parameterisation permits the results a single
laboratory experiment or computer simulation to be
stored in a single vector of dimension (p+n), where
(p~2) is the order of the approximating polynomial
and n is the number of control variables of the
simulation (or, equivalently, the number of experi—
mentsl treatments) The results of multiple simula-—
tions can be stored in m such veclors, or in an array
of dimension {m x (p+n]] where m is the the number
of simulation runs with different combinations of
control variable settings (or, equivalently, the
number of experimental observations with different
trestments).

Polynomial Parameterisations of Crash Signatures
Although approximating a continuous function with a
polynomial fit is & standard practice, the parameter—
isation of vehicle crash signatures using polynomials—
in—time appears Lo have been studied originally by
Huang, #f a/. The general problem considered was
that of approximating an arbitrary continous vehicie
deceleration profile x'™t) with an nth-order poly-
nomial in time

P = T ait!

i=0
over the time interval (1,>t>0) in the least squares
sense

ta

min f [xe) - pKe)Pdb

a 0
subject Lo the equality of the initial conditions on
velocity
p"{0) = x"Y0)
and position
p0) = x(0).
Huang, ¢/ a/, showed that the least squares cri-

lerion, logether with the specified initial conditions,
imphos the following (equivalent) conditions
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o the equality of the first n area moments of pl?\t)
and x®\t)

o the equality of the oorresTondin; definite integrals
from 0 to ty of pi*(t) and x'™\t) up to and including
order n+1

o the equality of the centroid times t, of the

corresponding integrals of p'™{t) and x™{t) up to and
including order n-1

The TESW Approximation The simplest polynomial
approximation of the crushing phase of the vehicle
deceleration profile is a linear or first—order
approximation. When combined with a second linear
segment o account for the rebound phase of the
deceleration, the result is the piecewise linear TESW
(tipped equivalent square wave), shown in Fig. 1.

With the general equivalence conditions specified
above, and with the final time of the collision
ty selected Lo insure the equality of the actual
and approximated rebound velocities, the TESW for a
collision can be completely specified by four
paramelers

0 tg, the time to maximum total dynamic crush
o t,, the time Lo the centroid of deceleration
o v,, the rebound velocity

o v,, the change in velocity at the time of
maximum crush

While specification of the TBSW requires four para—
meters, for barrier collisions two of Lhese four
parameters are redundant, since v, equals the initial
vehicle velocily vo (which is the collision para-
meter) and since t. can be calculated directly from t,
and vo. Thus the entire crash pulse can be specified
with only two paramsters, ty and v,.

Figures 1, 2, and 3 show the measured decelera—
tion, velocity, and position time-histories of a 1982
Chevrolet Citation during a 35mph frontal-barrier
crash test, logether with the corresponding TESW
approximations, Note that the TESW deceleration
profile in effect smooths the raw accelerometer data
such that successive integrations of the TESW show
generally excellent correlation with the cor-
responding integrations of the aclual accelerometer
data (particularly during the crushing phase).
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Fig. 3-Actual and TESW approximation of occupant
compartment position during a barrier collision

In validation studies, the TESW approximation
has proven to be remarkably successful in capluring
the essence of vehicle collision response, al least
insofar as Lhis response determines simulated
occupant dynamics. Huang, ef. a/, report differences
in simulated occupant head and chest decelerations of
less than 7%, when using complete deceleration data
and the corresponding TESW approximation. In work
currently in progress, the authors preliminarily have
found differences in HIC (head irjury criterion) and

CSI (chest severity index) of less than 10% in
similar tests, although this work has not yet been
verified,

Responge Surface Methodology

A response surface is a mathemstical repre~
sentation of the relationship between a dependent or
response variable and a set of independent or predic—~
tor variables. Response surface methodology (RSM)
refers lo the unique synthesis of otherwise standard
statistical techniques which are used to develop
response surfaces for experimental or simulaled data
The general issue of RSM is considered by Myers [4)
Box, Hunler, and Hunter (5}, and Box and Draper [6)
among others. The specific application of RSM to
compuler simulation experimenls is considered by
Fishman [6] and Naylor, ¢/ o/ [8] Biles and
Swain (9] provide an excellent description of RSM in
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the context of indusirial experimentation and
optimisation.

The primary objective of RSM is determining a
relationship of the form

y = z)

from the experimentally determined n-tuples (y,x)
where y is the vector of response variables y,

2 is the vector of predictor variables x, and |

is the vector—valued function representing the re—
sponse surface. This relationship is not intended to
be a causally correct representation of the under—
lying process, such as one would seek in developing &
dynamic simulation based upon differential or differ-
ence equations. Rather, the response surface is
intended to be a stslistically optima) summary of the
data (usually in the least squares sense), which
provides a parsimonious and explicit representation
of the observed but otherwise implicit input/output
relationship between predictor and response vari—
ables. The resulting response surface Lypically is
used for (1) investigating the relationship of the
response to the prediclor variables, in order to
determine sensitivities or to evaluate the underlying
process mechanism, and (2) determining the combina—
tion of predictor variables for which the response is
optimised.

RSM concerns itself with the four sieps of
developing and using response surfaces. These are

Step 1 Determining the appropriate number and
choice of response and predictor variables y; and x;

Step 2 Designing an experiment to generate Lhe
predictor/responge data (y,x).

Step 8 Deriving the response surface y=1I(x)
from the predictor/response dats.

Step 4 Applying the response surface for analysis
and/or optimisation.

Details of each of these steps for general applica—
tions can be found in the RSM literature previously
cited. In the following, we outline the first three
of these steps as these apply to the application
under consideration.

TESW Crash Signature Response Surface In the
application described, we seek Lo develop a response
surface which defines the relationship between Lhe
summary parameters of the crash signature of a pas~
senger vehicle and a set of vehicle structural design
variables, The broader context of this application,
in which the resulting response surface is used in
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aetermining optimal vehicle designs for oocupant
protection (at step 4), is described by White, o/
a/. [104112] Here we limit our attention to the
form of the model developed and its implications for
data storage and retrieval.

Step 1 The response variables selected for
this application are the two nonredundant TESW
parameters, t, and v, which (logether with the col-
lision parameter vo) characlerise the vehicle decelera—
tion profile during a barrier crash. The predictor
varisbles are selected physical properties of
structural components of the front structure of the
design vehicle, Logether with the parameler defining

the collision type. The structural design parameters
are

x; = constant collapse force of the foreframe
X, = constant oollapse force of the aftframe

Xy = constant collapse force of the sheetmetal
x4 = available crush length of the foreframe
xg = available crush length of the aftframe

as shown in the one-dimensional lumped-mass model
of a vehicle during front-to—fixed—object collisions
depicted in Fig 4  For the initial siudy, the
predictor or design variables were chosen based upon
engineering judgement. Subsequent sensitivily analy—
sis using the response surface developed by the
method described here provides an uitimate test of
this judgement (see [12]).
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Fig. 4-One-dimensional lumped—-mass model of a
vehicle during a barrier collison

P AR

o

NN SIS

S T ICT S
N I NI

P




LB R T ¥ Nl AL "4 6

s

.- ., ‘l ‘l " I'.

PR YL

*

A g

)]

s

ANhH S

Step 8 Dala defining the implicit relationship
between the design variables and the TESW response
parameters were genersied by completing 128 com-
puter simulation runs using the CRUSH [13] vehicle

simulator, Each run corresponds to one of the
combinations of design perameter values and collision
condition defined by an experiment design developed
specifically for this application (see Ford [14]).
The occupant compartment deceleration profile
obtained from each run was posiprocessed to deter-
mine the corresponding TESW paremeters. The
design/response data for all the simulation runs was
concatinated into a single design/results file--an
array of dimension (128 x 8).

Step & A response surface Lypically is derived
by multiple, linear, least—squares regression of a
polynomisl in the (perhaps coded) predictor variables
on the predictor/response data for each of the
(perhape transformed) response variables. First— and
second—order polynomial response surfaces are
reported almost exclusively in the literature. In
the current application, however, significant fits
could not be achieved for the design/response data
using either first~ or second-order approximating
functions. A third—order polynomial approximating
function of the form

k k k k k k
Yi=bo+X byx, I bpaXpXq 2IPIPH DparXpXyX;
p=t p=1 g=1 p=1 q=1 1=1

was required for each componment f;, =12, of
the response surface f. Stepwise, muitiple, linear,
least—squares regression was applied to minimise the
number of terms in the regression equations. In this
way, significant fits (r?>095) were obtained with 17
terms in each case. The response surface represent—
ing an expliciit model of the design information
derived from the simulstion runs can then be stored
in a single file——an array of dimension {2 x 34),

CONCLUSIONS

In this paper we have illustrated a general
method for approximating performance of & dynamic
system s8 & funclion of ils design parameters, by
reference to & specific application of this method in
oonjunotion with pessenger—vehicle crashworthiness
design optimization. In the general case, we have
shown that if an adequate parameterisation of a con-
tinuous dynamic reponse in p perameters can be
achieved, this parameterisation permits the results
of a single laboratory experiment or computer simula-
tion run to be stored in a veclor of dimension (p+n),
where n is the number of oontrol varisbles of the
simulation (or, equivalently, the number of experi-
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mental treatments). We have suggested that a poly—
nomial in time of order {p~2) is a suitable candidale
for achieving the desired parameterisation. Similarly,
we have shown thal the results of mulliple experi-
ments or simulations can be stored in a single array
of dimension [m x (p+n)}, where m is the the number
of simulation runs with different combinations of
control variable settings (or, equivalently, the
number of experimental observations with different
treatments). v

We have also shown in the general case that a
model of the data can be achieved through the appli—
cation of response surface methodology, which further
compresses the original data. In the general cass,
we have shown that the data in the [m x (p+n)]
dimensional array can be modeled by the coefficients
of p polynomials in the experiment or simulation
control variables. We have suggested that stepwise,
muitipie, least—squares, linear regression is an
appropriate candidate means for specifiying these
approximating polynomials. As a consequence of this
modeling, the results of the entire simulation study
are summarised by a global response surface, which
can be stored in an array of dimension (p x 2q),
where q is the maximum number of terms in any of
the approximating polynomisl regression equations.
Bach row of the array corresponds to one of the
summarising parameters of the dynamic response
veriable. Two columns are required for each para-—
meter of the polynomial approximation of the
corresponding row parameter, one for the coefficient
value and a second for the code identifying the
correaponding predictor.

For the specific vehicle collision problem
described in this paper, we have shown that the
deceleration time history or crash sighature of the
vehicle can be characlerised by the coeflicients of a
low-order polynomial approximation. Specifically, we
indicated that the barrier crash signature can be
approximated by the piecewise linear TESW approxi—
mation, involving only two parameters which are dis—
tinct from the collision condition specified in the
simulation input. This paramelerisation permits the
results of a single laboratory or computer simula-—
tion, consisting of a minimum of 8000 data elements,
to be summarised by only 8 dala elements. Similarly,
the results of 128 multiple simulations, consisting
of a total of more that a million individual data
elements, can be stored in a single array of dimen-
sion (128 x 8), with only 1024 dats elements. Thus
the original data storage requirements are compressed
by three orders of magnitude.

For the vehicle collision problem described in
this paper, we also have shown that the dala in the
(128 x 8) array achieved after parameterisation can
be modeled by a third—order global response surface.
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This response surface can be charscterised by 17
coefficients terms, permitting the results of the
entire simulation study to be stored in an array of
dimension (2 x 34). Each row of the array corres-
ponds to one of the two nonredundant parameters of
the TESW approximation of the crash signature.
Seventeen paired columns are required for the
response—surface coefficents, one for the coefficient
value and a second for the three-digit integer code
identifying the corresponding predictor. Thus the
thousand—plus nonsero data elements obtained through
the initial parameterisation, corresponding o the
original  million—plus - nonsero dala  elements
associsted with the simulation study, are compressed
into the 68 elements defining response surface.

The end result of this method is a small array
representing an approximate closed-form solution for
the dynamic response of a vehicle during barrier
collisions as a function of its design variables.
Approximations of the this relationship have been
achieved with only 68 individual data elements, re-
sulling in a reduction of data storage requiremenis
by almost seven orders of magnitute. This approxi-
mation has been used with success in subsequent
design optimisation studies.
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